
V0000000

V0000000

What we’ll discuss today

● Recap: What is a Service Mesh?
● Istio and OpenShift Service Mesh
● What’s new in Service Mesh release 2.0?
● Service Mesh components

○ Traffic Management

○ Observability (Jaeger, Kiali)

○ Security

● Keycloak
● End user authentication with keycloak

V0000000

V0000000

Microservices Approach

Microservices are an architectural approach to building application that consists of distributed and loosely
coupled services, in a way that one team’s changes won’t break the entire app.

V0000000

Expectation vs Reality

Service B

Service C

Service A

V0000000

Services Failure

Microservices Fallacies

- Network is reliable

- Latency is zero

- Bandwidth is infinite

- Network is secure

- Topology does not change

- There is one administrator

- Transport cost is zero

- Network is homogeneous

Service ServiceService

Service ServiceService

Service ServiceService

V0000000

Cascading Failure

Microservices are hard:

- Unpredictable failures

- End-to-end application correctness

- System degradation

- Topology changes

- Elastic/ephemeral/transient resources

- Distributed logs

- The fallacies of distributed computing

Service ServiceService

Service ServiceService

Service ServiceService

V0000000

Supporting Services for Distributed Applications

To address the challenges a set of supporting services must be added to your code

Service

Config

Svc Discovery

Routing

Circuit Breaker

Tracing

Platform

- Configuration

- Service Discovery

- Dynamic Routing

- Resilience

- Observability

V0000000

V0000000

Istio Project

Istio makes it easy to create a network of deployed services with load balancing, service-to-service
authentication, monitoring, and more, without any changes in the service code.

V0000000

Service Mesh

A Service Mesh is a logical space comprising one or more namespaces in which network rules are
expressed declaratively to a control plane and enforced by a sidecar proxy (Envoy).

Features:
● Load balancing
● Routing rules
● Service monitoring and

logging
● Secure cross-service

communications

V0000000

 Architecture

Control Plane

Applies security, route rules,
policies and reports traffic
telemetry at the pod level

The control plane manages
and configures the proxies
to route traffic and
configures

Data Plane

V0000000

 Architecture - Envoy

Envoy is a high-performance proxy that
intercepts all inbound and outbound traffic for
all services in the service mesh.

POD

ENVOY

SERVICE

POD

ENVOY

SERVICE

POD

ENVOY

SERVICE

 Pilot Mixer AuthJaeger Galley

ENVOY ENVOY ENVOY

V0000000

 Architecture - Pilot

Pilot configures the proxies at runtime and
provides:

- Service discovery for the Envoy
sidecars.

- Traffic management capabilities for
intelligent routing.

- Resiliency.

POD

ENVOY

SERVICE

POD

ENVOY

SERVICE

POD

ENVOY

SERVICE

 Mixer AuthJaeger Galley Pilot

V0000000

 Architecture - Auth

Citadel issues and rotates
certificates. Citadel provides:

- Strong service-to-service and
end-user authentication with
built-in identity and credential
management.

- Access control to services using
authorization policies

POD

ENVOY

SERVICE

POD

ENVOY

SERVICE

POD

ENVOY

SERVICE

 Pilot MixerJaeger Galley Auth

V0000000

 Architecture - Galley

Galley ingests the service mesh
configuration, then validates, processes,
and distributes the configuration.

POD

ENVOY

SERVICE

POD

ENVOY

SERVICE

POD

ENVOY

SERVICE

 Pilot Mixer AuthJaeger Galley

V0000000

V0000000

Red Hat OpenShift Service Mesh

ANY
INFRASTRUCTURE

OpenShift Container Platform
(Enterprise Kubernetes)

Amazon Web Services Microsoft Azure Google CloudOpenStackDatacenterLaptop

OpenShift Service Mesh
(Istio + Jaeger + Kiali)

ANY
APPLICATION

Service

CONTAINER

Service

CONTAINER

Service

CONTAINER

Service

CONTAINER

Service

CONTAINER

Based on the open source Istio project, Red Hat OpenShift Service Mesh provides a platform for
behavioral insight and operational control over your networked microservices in a service mesh.

V0000000

Comparing OpenShift Service Mesh with Istio

● One of the main differences between Istio and OSSM is that OpenShift Service Mesh supports soft multi-tenancy
○ Several instances of system can run side-by-side in isolated manner

○ Several Istio control planes can run on single Kubernetes cluster, forming multiple meshes

● Automatic Injection

● Automatic OpenShift route creation

● CNI Plugin

Operator

CNI Plugin

Control Plane

Data Plane Namespace 1

Data Plane Namespace n

Control Plane

Data Plane Namespace 1

Data Plane Namespace n

V0000000

V0000000

OpenShift Service Mesh 2.0

● Mixer component has been deprecated
● Pilot, Galley, Citadel, have been combined into a single binary known as Istiod. The "d"

stands for daemon
● Support for Envoy’s Secret Discovery Service (SDS). SDS is a more secure and efficient

mechanism for delivering secrets to Envoy side car proxies
○ Removes the need to use Kubernetes Secrets, which have well known security risks
○ Improves performance during certificate rotation, as proxies no longer require a

restart to recognize new certificates
● Updates the ServiceMeshControlPlane resource to v2
● Introduces WebAssembly extensions as a Technology Preview feature

V0000000

V0000000

Traffic Management

Traffic management decouples traffic flow and infrastructure scaling. This flexibility allows you to use Pilot to specify
which rules to apply for traffic management between pods. Pilot and Envoy manage which pods receive traffic.

MySQL Database

app.example.com

95% of tra
ffic

5% of traffic

backend-app (Java)frontend-app

backend-app (Go)frontend-app

makes call to

makes call to

v1

v2

V0000000

Traffic Management

● Splitting traffic between versions
● Injecting faults
● Conditional rules, Destination Rules
● Advanced routing

○ Auto retries
○ Retry budgets
○ Request deadlines
○ Circuit breaking

● Advanced orchestration
○ Canary, blue/green
○ Per request routing

● Rate limiting

V0000000

Virtual Services

You can route requests dynamically to multiple versions of a microservice through Red Hat OpenShift Service Mesh
with a virtual service.

Condition and destination to which the request is routed if
the the condition is fulfilled

Timeout. Default: 15s

Automatic retry when error code 503 returned

V0000000

DestinationRule

Virtual services route traffic to a destination. Destination rules configure what happens to traffic at that destination.

- ROUND_ROBIN: Default configuration, each
instance gets a request in turn

- RANDOM: Requests are forwarded at random to
instances in the pool.

- WEIGHTED: Requests are forwarded to instances in
the pool according to a specific percentage.

- LEAST_REQUESTS: Requests are forwarded to
instances with the least number of requests.

Subset of my-svc

V0000000

Gateways

Gateways are primarily used to manage ingress traffic, but you can also configure egress gateways.

HTTPS traffic from ext-host.example.com into the
mesh

V0000000

You can configure virtual services and destination rules to control traffic to a service entry in the same way you
configure traffic for any other service in the mesh.

ServiceEntry
A service entry adds an entry to the service registry that Red Hat OpenShift Service Mesh maintains internally. After
you add the service entry, the Envoy proxies can send traffic to the service as if it was a service in your mesh.

Add the external host ext-svc.example.com to your
OpenShift Service Mesh

V0000000

V0000000

Observability

Distributed Tracing
Jaeger

Monitoring
Prometheus

Trace the path of a request as it travels across a complex system, discover the latency
of the components along that path, and know which component in the path is creating
a bottleneck.

All service-to-service communication goes through Envoy proxies, and the service
mesh control plane is able to gather logs and metrics from these proxies.

Visualization
Kiali

Helps you define, validate, and observe the connections and microservices of the
service mesh. It visualizes the service mesh topology and provides visibility into
features such as request routing, circuit breakers, request rates, latency and more.

A System is observable if current state can be understood from outside. Observability is an important
characteristic of cloud-native distributed systems that helps you understand, operate, maintain and
evolve the system

V0000000

Distributed Tracing

Spans

Trace

Represents an individual unit of work done in a distributed system which consists of a
named, timed operation representing a piece of the workflow.

A visualization of the life of a request as it moves through a distributed system
consisting of multiple related spans assembled together

V0000000

Distributed Tracing

Select a service

Trace you services

V0000000

Distributed Tracing

Click on a trace to
see trace details

V0000000

Metrics and Monitoring

- Envoy-stats: The different envoy
proxies.

- Istio-mesh: Service mesh metrics
- citadel, pilot, galley,

istio-telemetry, istio-policy: The
metrics exposed by the control plane
components about themselves.

- kubernetes-service-endpoints:
Service endpoints that do not
necessarily belong to the mesh.

V0000000

Kiali

Kiali provides observability for your service mesh. By using Kiali you can view configurations, monitor traffic, and view and
analyze traces in a single console.

- OpenShift Service Mesh console

- Visualizes service mesh topology in real time

- Provides visibility into features like request routing, circuit breakers, request

rates, latency, etc.

- Inline edition of YAML representation of Istio resources, with powerful

semantic validation

- Actions to create, update, delete Istio configuration resources, driven by

wizards

- Custom metrics dashboards

- Integrated with distributed tracing

V0000000

Kiali

Namespaces that form the Service Mesh

V0000000

Kiali

View topology graph of the service mesh
based on real-time traffic. The graph
changes when traffic hits the services

V0000000

V0000000

Istio Security

V0000000

Transport authentication

- Connections can be setup to use mTLS.
- No configuration needed on the apps.
- Certificates are provisioned by Istio (Citadel)

mTLS is set to false by default. This means that mTLS is not
enforced, and services are able to communicate over plain
HTTP.

A

Proxy

http

Mutual TLS ✔

B

Proxy

http

Certificate Authority

https://emojipedia.org/heavy-check-mark/

V0000000

Demo

● Install OpenShift Service Mesh
● Deploy “bookinfo” application
● Observability

○ Tracing

○ Kiali

● Traffic Control
○ Simple routing

● Security
○ Mutual TLS

V0000000

V0000000

● Keycloak is an open source identity and Access management solution
● Red Hat Single Sign-On (RH-SSO) is based on the Keycloak project
● Keycloak is a single sign-on solution for web apps and RESTful web services
● Keycloak supports standard protocols like OAuth 2.0, OpenID Connect, SAML 2.0

○ Acts as a centralized authentication server

○ Provides user federation to sync users from LDAP and Active Directory servers

○ Integrates with 3rd party identity providers including social networks

○ Provides Rest APIs and an administration GUI for central management of users,

roles, role mappings, clients and configuration.

● Installation and configuration of the Keycloak SSO server on OpenShift can now be
automated using the SSO operator in OpenShift

V0000000

OpenID Connect Flow

V0000000

Authentication

A request authentication policy with jwt issuer

V0000000

Authorization Policy

A authorization policy to allow request

V0000000

Demo

● Security
○ Setup keycloak server

○ Apply configuration to enable authentication with Keycloak

user

V0000000

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning support,

training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

