
Moving into a serverless
world with Tekton and
Knative

Presenter: Veer Muchandi
Title: Chief Architect - Container Solutions, NACS
Social Handle: @VeerMuchandi
Blogs: https://blog.openshift.com/author/veermuchandi/

Serverless Model
Serverless computing is a cloud-computing execution model in which the cloud
provider acts as the server, dynamically managing the allocation of machine
resources. Pricing is based on the actual amount of resources consumed by an
application, rather than on pre-purchased units of capacity.[1] It is a form of utility
computing.

So, how can enterprises running kubernetes platform use this serverless computing
model?

https://en.wikipedia.org/wiki/Cloud-computing
https://en.wikipedia.org/wiki/Execution_model
https://en.wikipedia.org/wiki/Serverless_computing#cite_note-techcrunch-lambda-1
https://en.wikipedia.org/wiki/Utility_computing
https://en.wikipedia.org/wiki/Utility_computing

Knative Overview - Components

Knative Serving

Deploy serverless
containers, can “scale to 0”,

snapshots of code and
configuration

.. a Kubernetes-based platform to deploy and manage modern serverless
container based workloads. Extends K8S with CRDs

Knative Eventing

Common infrastructure for
consuming and producing

events that stimulate
applications

* Knative Eventing is Tech Preview with OpenShift Container Platform 4.4

Tekton Pipelines (formerly Knative Build, branched out)

Tekton

Provides Kubernetes native
modern resources for

declaring CI/CD pipelines.

* Tech Preview with OpenShift Container Platform 4.4

Tekton

OpenShift Pipelines Architecture

PipelineResource

Pipeline

Task Task

Define pipeline Run pipelines

Pipeline Controllers
(Tekton, ext, ...)

pipeline-pod-a

pipeline-pod-b
PipelineRun

TaskRun TaskRun

pipeline-pod-c

Knative Serving

Knative Serving

Service — is the combined lite version
of all the objects below to enable
simple use cases

● Configuration — is the desired
state for your service, both code
and configuration

● Revision — represents an
immutable point-in-time
snapshot of your code and
configuration

● Route — assigns traffic to a
revision or revisions of your
service

.. serverless primitives with containers

Serving Resources

Knative Eventing

Knative Eventing
.. composable primitives for late binding event sources and event consumers

● Event Source: fires events. KubernetesEventSource, GithubSource, PingSource, KafkaSource
etc,

● Event Consumer
○ Addressable: Receive and Acknowledge event delivery
○ Callable: Receive, Transform and Return 0 or 1 event

● Event Broker: Bucket of events. Receives events and forwards to subscribers

● Event Trigger: a filter on event attributes which should be delivered to an Addressable

● Event Registry: a collection of event types to create a trigger

● Event Channel: an event forwarding and persistence layer. Implementations -
InMemoryChannel, KafkaChannel, NATSChannel

● Event Subscription: register to receive traffic from a Channel

Event Delivery Mechanisms

Knative Eventing: Brokers and Triggers

Demos
https://github.com/RedHatWorkshops/knative-on-ocp4

https://github.com/RedHatWorkshops/knative-on-ocp4

Thank you

