Securing a Multitenant Kubernetes Cluster

Victoria, BC

Kirsten Newcomer
Senior Principal Product Manager
CONTAINERS ARE THE NEW WAY TO DELIVER APPLICATIONS

VMs virtualize the hardware

Containers virtualize the process

CONTAINER DEPLOYMENTS ARE INCREASING
KUBERNETES IS THE NEW WAY OF AUTOMATING APPLICATION RESILIENCY

- Auto scale
- Health checks
- Networking (CNI) & Routing
- Platform HA
- Application HA
Security fixes
100s of defect and performance fixes
200+ validated integrations
Middleware integrations
(container images, storage, networking, cloud services, etc)
9 year enterprise lifecycle management
Certified Kubernetes
OPENSHIFT HELPS YOU DELIVER APPLICATIONS FASTER

Cloud-native Applications AI & Machine Learning Blockchain Internet of Things Innovation Culture

CONTAINERS, KUBERNETES, MICROSERVICES & DEVOPS ARE KEY INGREDIENTS
RED HAT OPENSSHIFT BUSINESS VALUE

531% 5 Year ROI

<table>
<thead>
<tr>
<th>66% Faster development lifecycle</th>
<th>36% More applications per year</th>
<th>8 MONTHS Payback period</th>
<th>$1.29M Average annual benefits per 100 developers</th>
</tr>
</thead>
</table>

The Business Value of Red Hat OpenShift, IDC #US41845816, October 2017
OPENSHIFT IS ENTERPRISE KUBERNETES
BUSINESS CRITICAL APPLICATIONS RUN ON OPENSHIFT

“Red Hat OpenShift allows us to go to market faster. We can move microservices and applications on OpenShift in a few seconds. That’s the impact this has on our business.” -- Luis Uguina, Chief Digital Officer, Macquarie Bank

- Digital-first bank, reshaping the Australian banking market
- Rethinking their mobile customer experience.
- Using RHEL, OpenShift and JBoss Fuse
- More than 60 business critical applications on OpenShift

This new model is helping us hire and retain top talent.

View the Macquarie Bank keynote
RESTON, Va., July 23, 2019 /PRNewswire/ — ORock® Technologies, Inc. today announced that it received authorization from the Federal Risk and Authorization Management Program (FedRAMP) to offer Red Hat OpenShift Container Platform within its FedRAMP Moderate cloud environment. ORock Secure Containers as a Service with Red Hat OpenShift provides customers with a fully managed Platform as a Service (PaaS) solution for deploying containers in hybrid cloud and multi-cloud environments with the additional security controls and continuous monitoring required for FedRAMP compliance.

Red Hat OpenShift Container Platform helps unite developers and IT operations on a single platform to build, deploy, and manage applications consistently across hybrid cloud infrastructures. This helps organizations achieve greater value by delivering modern and traditional applications with shorter development cycles and increased efficiencies, while providing the functionality that developers require in deploying applications at scale without compromising on security features. The platform is built on open source innovation and industry standards, including Red Hat Enterprise Linux and Kubernetes, and is trusted by companies around the world.

SECURING A MULTI-TENANT CLUSTER
Requires security throughout the stack and the IT lifecycle

- DESIGN
 - Identify security requirements & governance models
- BUILD
 - Built-in from the start; not bolted-on
 - Deploy to trusted platforms with enhanced security capabilities
- RUN
 - Automate systems for security & compliance
- MANAGE
 - Revise, update, remediate as the landscape changes
DEVSECOPS
THROUGH THE ADOPTION OF CONTAINERS

We created Dev and Ops and Security user stories and tackled them together.

I can break builds if security and compliance rules aren’t followed...

We’re empowering the developers and ideally empowering them straight to production.

DEVELOPER
SECURITY
OPERATIONS

DevNation Federal 2017 - The Journey to DevSecOps
OPENSHIFT ENABLES MULTI-TENANCY
Layers and Lifecycle

1. Host OS
2. Container platform
3. Network
4. Containerized applications
1. HOST OS CONTAINER MULTI-TENANCY

Container Security starts with Linux Security

- Security in the RHEL host applies to the container
- SELinux and Kernel Namespaces are the one-two punch no one can beat
- Protects not only the host, but containers from each other
- RHEL CoreOS provides minimized attack surface
- Common Criteria cert - including container framework
Red Hat Enterprise Linux CoreOS is versioned with OpenShift
Only what’s needed to run containers
Immutable image-based deployments & updates
Read-only & locked down
Managed by Kubernetes Operators

Red Hat Enterprise Linux CoreOS is managed by the cluster
The Operating system is operated as part of the cluster, with the
config for components managed by Machine Config Operator:
 ● CRI-O config
 ● Kubelet config
 ● Authorized registries
 ● SSH config

Control plane runs on RHEL CoreOS
Worker nodes can run RHEL CoreOS or RHEL
2. THE CONTAINER PLATFORM
OpenShift Security & Multitenancy Features Include

- Host & Runtime security
- Identity and Access Management
- Project namespaces
- Integrated & extensible secrets management
- Service CA
- Logging, Monitoring, Metrics
RUNTIME SECURITY POLICIES

SCC (Security Context Constraints)

Allow administrators to control permissions for pods

Restricted SCC is granted to all users

By default, no containers can run as root

Admin can grant access to privileged SCC

Custom SCCs can be created

```
$ oc describe scc restricted
Name: restricted
Priority: <none>
Access:
  Users: <none>
  Groups: system:authenticated
Settings:
  Allow Privileged: false
  Default Add Capabilities: <none>
  Required Drop Capabilities: KILL,MKNOD,SYS_CHROOT,SETUID,SETGID
  Allowed Capabilities: <none>
  Allowed Seccomp Profiles: <none>
  Allowed Volume Types: configMap,downwardAPI,emptyDir,persistentVolumeClaim,projected
  Allow Host Network: false
  Allow Host Ports: false
  Allow Host PID: false
  Allow Host IPC: false
  Read Only Root Filesystem: false
  Run As User Strategy: MustRunAsRange
```

Red Hat
IDENTITY AND ACCESS MANAGEMENT

OpenShift includes an OAuth server, which does three things:

- Identifies the person requesting a token, using a configured identity provider
- Determines a mapping from that identity to an OpenShift user
- Issues an OAuth access token which authenticates that user to the API

Supported Identity Providers include

- Keystone
- LDAP
- GitHub
- GitLab
- GitHub Enterprise (new with 3.11)
- Google
- OpenID Connect
- Security Support Provider Interface (SSPI) to support SSO flows on Windows (Kerberos)

Managing Users and Groups in OpenShift

Configuring Identity Providers

Red Hat
PROJECTS ISOLATE APPLICATIONS across teams, groups and departments
Role based authorization (RBAC)

- Project scope & cluster scope available
- Matches request attributes (verb, object, etc)
- If no roles match, request is denied (deny by default)
- Operator- and user-level roles are defined by default
- Custom roles are supported

For more information see: Managing RBAC in OpenShift
SECRETS MANAGEMENT

- Platform secrets are stored in etcd
 - Passwords and credentials
 - SSH Keys
 - Certificates

- Application secrets can be stored in etcd or external vault

- Secrets are made available as
 - Environment variables
 - Volume mounts
 - Interaction with external systems (e.g. vaults)

- Encrypted in transit and at rest*

- Never rest on the nodes
CLUSTER CERTIFICATE MANAGEMENT

- Certificates are used to provide secure connections to
 - master and nodes
 - Ingress controller and registry
 - etcd

- Certificate rotation is automated

- Configure external endpoints to use custom certificates

- For example:
 Requesting and Installing Let’s Encrypt Certificates for OpenShift 4
Cluster monitoring is installed by default

- Exposes resource metrics for Horizontal Pod Autoscaling (HPA) by default
 - HPA based on custom metric is tech preview
- No manual etcd monitoring configuration anymore
- New screens for managing Alerts & Silences
- More metrics available for troubleshooting purposes (e.g. HAproxy)
- Configuration via ConfigMaps and Secrets
CLUSTER LOG MANAGEMENT

Install the Elasticsearch and Cluster Logging Operators from OperatorHub

- EFK stack aggregates logs for hosts and applications
 - Elasticsearch: a search and analytics engine to store logs
 - Fluentd: gathers logs and sends to Elasticsearch.
 - Kibana: A web UI for Elasticsearch.

- Access control
 - Cluster administrators can view all logs
 - Users can only view logs for their projects
 - Central Audit policy configuration

- Ability to send logs elsewhere
 - External elastic search, Splunk, etc

configure via CRD

```yaml
apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
  name: "instance"
  namespace: "openshift-logging"
spec:
  managementState: "Managed"
  logStore:
    type: "elasticsearch"
    elasticsearch:
      nodeCount: 3
      resources:
        limits:
          cpu: 800m
          memory: 1Gi
        requests:
          cpu: 800m
          memory: 1Gi
    storage:
      storageClassName: gp2
      size: 100Gi
    redundancyPolicy: "SingleRedundancy"
  visualization:
    type: "kibana"
    kibana:
      replicas: 1
  curation:
    type: "curator"
    curator:
      schedule: "30 3 * * *"
```
3. NETWORK MULTI-TENANCY
Fine Grained Control with Network Policy

Example Policies
- Allow all traffic inside the project
- Allow traffic from green to gray
- Allow traffic to purple on 8080

apiVersion: extensions/v1beta1
kind: NetworkPolicy
metadata:
 name: allow-to-purple-on-8080
spec:
podSelector:
 matchLabels:
 color: purple
ingress:
- ports:
 - protocol: tcp
 port: 8080

Enabled by default in OpenShift 4
MULTI TENANT INGRESS & EGRESS CONTROL

Application pods run on one OpenShift Cluster. Microsegmented with Network Security policies.

Infra Nodes in each zone run Ingress and Egress pods for specific zones. Egress firewall to limit external addresses accessed.

If required, physical isolation of pods to specific nodes is possible with node-selectors. But that can reduce worker node density.

There may be cases where a single tenant cluster is preferred.
OPENSHIFT MULTUS

Optionally Separate Control Plane and Data Plane

Multus Enables Multiple Networks & New Functionality to Existing Networking

The Multus CNI “meta plugin” for Kubernetes enables one to create multiple network interfaces per pod, and assign a CNI plugin to each interface created.

1. Create pod annotation(s) to call out a list of intended network attachments...
2. ...each pointing to CNI network configurations packed inside CRD objects

3.x Capability...

Kubernetes

OpenShift SDN CNI

Pod

eth0

OpenShift SDN CNI (default)

4.x Capability...

Kubernetes

CNI “meta plugin” (MULTUS)

OpenShift SDN CNI

CNI plug-in with new functionality

Pod

eth0

net0

OpenShift SDN CNI (default)

New, optional secondary plug-ins:
- macvlan
- host device
- ipam(dhcp)
4. SECURING CONTAINERIZED APPLICATIONS

Secure and Automate the Content Lifecycle
Trust is temporal; rebuild and redeploy as needed

Track updates & simplify management with ImageStreams

Use Image Change Triggers to automatically rebuild custom images with updated (patched) external images
RED HAT QUAY
ENTERPRISE CONTAINER REGISTRY

- Offered as self-managed and as-a-service
- Vulnerability Scanning (Clair)
- Geographic Replication
- Build Image Triggers
- Image Rollback with Time Machine
CI/CD MUST INCLUDE SECURITY GATES

- Integrate security testing into your build / CI process
- Use automated policies to flag builds with issues
- Sign your custom container images
RED HAT SERVICE MESH

Key Features

● A dedicated network for service to service communications
● Observability and distributed tracing
● Policy-driven security
● Routing rules & chaos engineering
● Powerful visualization & monitoring
● Will be available via OperatorHub
● Working on multi-tenancy for GA (e.g. Kiali to use OpenShift RBAC)

Generally Available in July
COMPREHENSIVE CONTAINER SECURITY

CONTROL
Application Security

Container Content
CI/CD Pipeline

Container Registry
Operators

DEFEND
Infrastructure

Container Host Multi-tenancy
Container Platform

Network Isolation
Storage

Audit & Logging
Service Mesh

EXTEND

Security Ecosystem

30
Next Steps

• Speak with a Red Hat expert here at Security Symposium
• Look for the slides in a “Thank You” email from us in the next few days
• Stay up to date with Red Hat at redhat.com/security
• Visit redhat.com/events to find out about workshops and other events like this one coming to your area
Thank you to our partner
REGULATORY COMPLIANCE WITH OPENSSHIFT

- Red Hat contracted with Coalfire to provide a PCI-DSS technical controls product applicability guide (PCI-DSS 3.2) and reference architecture (PCI-DSS 3.2.1) for OpenShift
- Guides also available for ISO 27001, FISMA (NIST) & FISMA
- OpenShift Hardening Guide for 3.10 & 3.11 - OpenShift 4 Guide planned for Fall 2019
OPERATORS SIMPLIFY MANAGEMENT OF COMPLEX APPLICATIONS ON KUBERNETES

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVOPS</td>
<td>dynatrace</td>
</tr>
<tr>
<td>APM</td>
<td>APPDYNAMICS, INSTANA, New Relic, Sysdig</td>
</tr>
<tr>
<td>DATA SERVICES</td>
<td>GIGASPIDES, hazelcast, PlanetScale</td>
</tr>
<tr>
<td>DATABASE</td>
<td>Couchbase, mongoDB, nUODB, PingCAP</td>
</tr>
<tr>
<td>SECURITY</td>
<td>aqua, anchore, BLACKDUCK, TREMOL0 SECURITY, tufin</td>
</tr>
<tr>
<td>STORAGE</td>
<td>ROBIN, STORAGEOS</td>
</tr>
</tbody>
</table>

AND MANY MORE TO COME...
- Containerized
- Cloud storage ready
- Replicated
- Backup
- Automated updates

- Containerized
- Container storage ready
- Replicated
- Backup
- Automated updates
- Enhanced observability
- Customization
- Local development
- Fully Open Source
- Any Kubernetes
- Certified on OpenShift
EVERYTHING RUNS IN PODS IN OPENSHEIFT 4

And managed with operators

Enabling day 2 config and automated updates
BUILD OPERATORS FOR YOUR APPS

Use OLM to Manager your Application Lifecycle

- Helm Chart
 - Helm SDK
 - Build operators from Helm chart, without any coding

- Ansible Playbooks APBs
 - Ansible SDK
 - Build operators from Ansible playbooks and APBs

- Go SDK
 - Build advanced operators for full lifecycle management
ATTACHED STORAGE

Secure storage by using

- SELinux access controls
- Secure mounts
- Supplemental group IDs for shared storage