
ReplicaSets &
Deployments

(The Underrated, OG Operators)

Why do we care about ReplicaSets
(formerly ReplicaControllers)?

Redundancy
Multiple running instances means failure can be tolerated.

000 001 002 003 004

Scale
Multiple running instances mean more requests can be handled.

000 001 002 003 004
cpu:80% cpu:75% cpu:70%

cpu:20% cpu:25% cpu:23%

Sharding
Multiple running instances can handle different parts

of a computation in parallel.

000 001 002 003 004

volume

ReplicaSets in Action!

ReplicaSet1

apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
 name: myfirstreplicaset
spec:
 selector:
 matchLabels:
 app: myfirstapp
 replicas: 1
 template:
 metadata:
 labels:
 app: myfirstapp
 spec:
 containers:
 - name: nodejs
 image: myimage

kubectl scale replicaset myfirstreplicaset --replicas=3

kubectl create -f myfirstreplicaset.yaml

Selector: app=myfirstapp

 Pod
Label: app=myfirstapp

 Pod
Label: app=myfirstapp

 Pod
Label: app=myfirstapp

 3
Primary
Resource

Secondary
Resources

Start

Find pods matching the
label selector

Compare
matched

vs. desired
pod count

Create additional pod(s)
from the current
template

Delete the excess
pod(s)

Too few Too many

Just enough

The ReplicaSet
Control Loop

How do we accomplish this?

Chapter 4
Designing Infrastructure Applications

The reconciler pattern is a software pattern
that can be used or expanded upon for
managing cloud native infrastructure. The
pattern enforces the idea of having two
representations of the infrastructure—the first
being the actual state of the infrastructure,
and the second being the expected state of
the infrastructure.

The reconciler pattern will force the engineer
to have two independent avenues for getting
either of these representations, as well as to
implement a solution to reconcile the actual
state into the expected state.

ReplicaSets in Action!
apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
 name: myfirstreplicaset
spec:
 selector:
 matchLabels:
 app: myfirstapp
 replicas: 3
 template:
 metadata:
 labels:
 app: myfirstapp
 spec:
 containers:
 - name: nodejs
 image: myimage

kubectl create -f myfirstreplicaset.yaml

 ReplicaSet1

Selector: app=myfirstapp

 Pod

Label:
app=myfirstapp

 Pod

Label: app=myfirstapp

 Pod

Label:
app=myfirstapp

Kube-API ReplicaSetController

ReplicaSet
Add Event

r.Client.List Pods by label: rs.metadata.label

r.Client.Create Pod 1

r.Client.Create Pod 2

c.Watch(Replicaset)

c.Watch(Pods, OwnerType: ReplicaSet)

Pod 1
Add Event

Pod 2
Add Event

Pod 3
Add Event

r.Client.List Pods by label.metadata.label

r.Client.List Pods by label: rs.metadata.label

r.Client.List Pods by label: rs.metadata.label

r.Client.Create Pod 3

0 < spec.replicas?

1 < spec.replicas?

2 < spec.replicas?

3 < spec.replicas?

ReplicaSets in Action!

 ReplicaSet1

apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
 name: myfirstreplicaset
spec:
 selector:
 matchLabels:
 app: myfirstapp
 replicas: 3
 template:
 metadata:
 labels:
 app: myfirstapp
 spec:
 containers:
 - name: nodejs
 image: myimage

kubectl create -f myfirstreplicaset.yaml

Selector: app=myfirstapp

 Pod

Label: app=myfirstapp

 Pod

Label: app=myfirstapp

 Pod

Label: app=myfirstapp

Kube-API ReplicaSetController

Pod 1
Delete Event

r.Client.List Pods by label: rs.metadata.label

r.Client.Create Pod

c.Watch(Replicaset)

c.Watch(Pods, OwnerType: ReplicaSet)

Pod 4
Add Event

 Pod

Label: app=myfirstapp

r.Client.List Pods by label: rs.metadata.label

2 < spec.replicas?

3 < spec.replicas?

 Pod Pod Pod

 ReplicaSet

Deployment
Selector: app=nginx

Label: app=nginx

Label: pod-template-hash=2819995210

Label: app=nginx

Label: pod-template-hash=2819995210

Label: app=nginx

Label: pod-template-hash=2819995210

Selector: app=nginx

Selector: pod-template-hash=2819995210
Label: app=nginx

Label: pod-template-hash=2819995210

Label: app=nginx

Deployments!

Kube-API DeploymentControllerc.Watch(Deployments)

c.Watch(ReplicaSets)

c.Watch(Pods)Deployments

ReplicaSetController

Deploy
Add

r.Client.Create RS

RS
Add

r.Client.Create Pod

Garbage Collection (GC)

Garbage Collection assists in deleting objects
that have an owner that no longer exists.

OwnerReferences

ReplicaSet1

apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
 name: myfirstreplicaset
spec:
 selector:
 matchLabels:
 app: myfirstapp
 replicas: 3
 template:
 metadata:
 labels:
 app: myfirstapp
 spec:
 containers:
 - name: nodejs
 image: myimage

kubectl create -f myfirstreplicaset.yaml

Selector: app=myfirstapp

 Pod
Label: app=myfirstapp

 Pod
Label: app=myfirstapp

 Pod
Label: app=myfirstapp

ownerRef ownerRef ownerRef

Dependents/
Children

 ownerReferences:
 - apiVersion: apps/v1
 blockOwnerDeletion: true
 controller: true
 kind: ReplicaSet
 name: myfirstreplicaset
 uid: 30c68160-d992-11e8-84d9-e6f5b7702569

GroupVersion of Owner Object (Required)

Kind of Owner Object (Required)

Name of Owner Object
(Required)

UID of Owner Object (Required)

*querying API for UID not currently supported.

OwnerReferences
Only applicable when doing
“foreground” delete (optional)

Strictly informational: shows that
a Controller set the
ownerReferences (optional).

Finalizers
Allows controllers to implement conditions that must be

completed before the object can be deleted.

apiVersion: "stable.example.com/v1"
kind: CronTab
metadata:
 finalizers:
 - finalizer.stable.example.com

 Pod Pod Pod

 Controller

metadata:
 deletionTimestamp: 2018-10-20T01:16:04Z

