
Red Hat OpenShift Integration
Istio, Kafka and Camel

Robert Sedor
Senior Cloud Platform Architect

Amritpal Jhajj
Senior Solutions Architect

Red Hat OpenShift Integration2

AGENDA

● Complexities of Microservices Architecture
● Service Mesh (Istio)
● AMQ Streaming (Kafka)
● Cloud Native Camel (Camel K)

Microservices Architecture

Red Hat OpenShift Integration4

Microservices Distributed Architecture

Red Hat OpenShift Integration5

Distributed Architecture

Dealing with Complexity

Red Hat OpenShift Integration7

Netflix OSS And Spring Cloud

Red Hat OpenShift Integration8

What About … ?

Red Hat OpenShift Integration9

There Should Be A
Better Way

Service Mesh
A dedicated network for

Service-to-service communications

Red Hat OpenShift Integration11

Microservices Evolution

Red Hat OpenShift Integration12

Istio
● Istio is an open-source service mesh

Red Hat OpenShift Integration13

Istio - Service Mesh Architecture

Istio Features

Red Hat OpenShift Integration15

Istio - Fault Tolerance
Circuit Breakers - Without Istio

Red Hat OpenShift Integration16

Istio - Fault Tolerance
Circuit Breakers - With Istio

Red Hat OpenShift Integration17

Istio - Dynamic Routing
Routing - Without Istio

Red Hat OpenShift Integration18

Istio - Dynamic Routing
With Istio [A/B Deployment]

Red Hat OpenShift Integration19

Istio - Security
The Istio security features provide:

● Strong identity
● Powerful policy
● Transparent TLS encryption and

○ Authentication, Authorization and Audit (AAA) tools to protect your services and
data

Red Hat OpenShift Integration20

Istio - Security
Kubernetes Scenario:

1. SPIFFE certificate (X.509) and key pair for each of the existing and new service
accounts

2. Kubernetes mounts the certificate and key pair to a pod according to its service
account via Kubernetes secret volume

3. Auto rotation of the certificates by rewriting the Kubernetes secrets
4. Secure naming generation and distribution to proxies

https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://istio.io/docs/concepts/security/#secure-naming

Red Hat OpenShift Integration21

Istio - Security
Mutual Authentication (mTLS) Scenario:

1. Client’s outbound traffic goes to its Envoy Proxy
2. The client side Envoy starts a mutual TLS handshake with the server side Envoy, does

a secure naming check to verify that the service account is authorized
3. The client side Envoy and the server side Envoy establish a mutual TLS connection,

and Istio forwards the traffic from the client side Envoy to the server side Envoy
4. After authorization, the server side Envoy forwards the traffic to the server service

through local TCP connections

Red Hat OpenShift Integration22

Istio - Security
Authorization Scenario:

1. ClusterRbacConfig enables/disables (including selectively) Authorization in the mesh
2. ServiceRole and ServiceRoleBinding define the overall authorization
3. ServiceRole defines permissions to access services
4. ServiceRoleBinding bind the ServiceRole to Subjects. Subjects can be Users (service

accounts or properties)

More information here

https://istio.io/docs/concepts/security/#authorization

Red Hat OpenShift Integration23

Istio - Other Features
● Distributed Tracing
● Chaos Engineering
● Dark Launch
● More ...

Pulling It All Together

Red Hat OpenShift Integration25

OpenShift - Service Mesh

Red Hat AMQ Streams

Red Hat OpenShift Integration27

Red Hat AMQ Streams
Overview

Data streaming platform based on Apache Kafka.

Available standalone (RHEL) or on OpenShift (OCP).

Red Hat OpenShift Integration28

Red Hat AMQ Streams
What is Apache Kafka?

Apache Kafka is a distributed system
designed for streams. It is built to be an
horizontally-scalable, fault-tolerant, commit
log, and allows distributed data streams and
stream processing applications.

Red Hat OpenShift Integration29

Red Hat AMQ Streams
What is Apache Kafka?

● Developed at Linkedin back in 2010, open sourced in 2011
● Designed to be fast, scalable, durable and available
● Distributed by nature
● Data partitioning (sharding)
● High throughput / low latency
● Ability to handle huge number of consumers

Red Hat OpenShift Integration30

Red Hat AMQ Streams
What is AMQ Streaming for? Main Use Cases

Rebuild user activity tracking pipeline as a set
of real-time publish-subscribe feeds. Activity
is published to central topics with one topic

per activity type.

Replacement of traditional message broker,
has better throughput, built-in partitioning,

replication, and fault-tolerance. Provides
strong durability.

Messaging Website Activity Tracker

Red Hat OpenShift Integration31

Red Hat AMQ Streams
What is AMQ Streaming for? Main Use Cases

Aggregation of statistics from distributed
applications to produce centralized feeds of

operational data.

Abstracts details of files an gives event data as
stream of messages. Offers good performance,

stronger durability guarantees due to
replication.

Metrics Log Aggregation

Red Hat OpenShift Integration32

Red Hat AMQ Streams
What is AMQ Streaming for? Main Use Cases

Stream Processing Data Integration

Enables continuous, real-time applications
built to react to, process, or transform

streams.

Captures streams of events or data changes
and feeds these to other data systems.

Red Hat OpenShift Integration33

Red Hat AMQ Streams
Why should you use it?

● Scalability and Performance
○ Designed for horizontal scalability
○ Scaling has minimal impact on throughput and latency
○ Adding nodes to running cluster is easy
○ Different approaches: One big cluster vs. Several small clusters

● Message ordering guarantee
○ Messages are written to disk in the same order as received by the broker
○ Messages are read from disk from the requested offset
○ Kafka protocol makes sure that one consumer can read only one partition
○ Order is guaranteed only within a single partition!
○ No synchronization between producers!

Red Hat OpenShift Integration34

Red Hat AMQ Streams
Why should you use it?

● Message rewind/replay
○ Limited only by available disk space

■ Amount of stored messages has no impact on performance
○ Topic/Partition size has no direct impact on performance
○ Allows to reconstruct application state by replaying the messages
○ Combined with compacted topics allows to use Kafka as key-value store
○ Event source and/or Parallel Running patterns

Red Hat OpenShift Integration35

Red Hat AMQ Streams
What’s the catch?

● Kafka protocol cannot be proxied
○ Clients need access to all brokers in the cluster
○ Producers/consumers might need to maintain large number of TCP connections
○ Proxying via HTTP REST or AMQP could be a solution

● Dumb broker, smart clients
○ Carefully decide the “right” number of partitions for each topic
○ Adding partitions can change destination partition for “keyed” messages
○ Removing partitions is not possible

Red Hat AMQ Streams On OCP

Red Hat OpenShift Integration37

AMQ Streams on OCP
Supported Configurations

● Based on OSS project called Strimzi
● OpenShift Container Platform 3.9 and newer
● Apache Kafka Ecosystem

○ Only the java components released directly from Apache Software Foundation
○ Apache Kafka Broker
○ Apache Kafka Connect
○ Apache Kafka Streaming API
○ Apache Kafka Java Producer, Consumer and Management Clients
○ Apache Zookeeper (ONLY as an implementation detail of Apache Kafka)

● Source: Red Hat AMQ 7 Supported Configurations - AMQ Streams 1.0

https://access.redhat.com/articles/2791941#red-hat-amq-streams-10-11

Red Hat OpenShift Integration38

AMQ Streams on OCP
What is Strimzi?

Strimzi is a set of enabling services that allow
Kafka to work in OpenShift as a first class
citizen, be installed easily and configured and
managed simply.

Red Hat OpenShift Integration39

AMQ Streams on OCP
What is Strimzi?

● Provides:
○ Docker images for running Apache Kafka and Zookeeper
○ Tooling for managing and configuring Apache Kafka clusters, topics and users

● Follows the Kubernetes Operator Model

Red Hat OpenShift Integration40

AMQ Streams on OCP
Goals

● Simplifying the Apache Kafka deployment on OpenShift
● Using the OpenShift native mechanisms for

○ Provisioning the cluster
○ Managing the topics

● Removing the need to use Kafka command-line tools
● Providing a better integration with applications running on OpenShift

○ Microservices, data streaming and even-sourcing

Red Hat OpenShift Integration41

AMQ Streams on OCP
Kubernetes Operators

● Observe: Monitor the current state of
the application

● Analyze: Compare the actual state to
the desire state

● Act: Resolve any differences between
actual and desired state

Observe

Analyze

Act

Red Hat OpenShift Integration42

AMQ Streams on OCP
Kubernetes Operators

● Application-specific controller is used to create, configure and manage other complex
application:

○ The controller contains specific domain/application knowledge
○ Usually used for stateful applications (databases, …) which are non-trivial to

operate on Kubernetes/OpenShift
● Controller operates based on input from Config Maps or Custom Resource Definitions

○ User describes the desired state
○ Controller applies this state to the application

Red Hat OpenShift Integration43

AMQ Streams on OCP
AMQ Streams Operators

● Cluster Operator
● Topic Operator
● User Operator

Red Hat OpenShift Integration44

AMQ Streams on OCP
Cluster Operator - Topology

Zookeeper

Kafka

Cluster
Operator

Cluster CR

Manages

Red Hat OpenShift Integration45

AMQ Streams on OCP
Cluster Operator - Main Features

● Creating and managing Apache Kafka clusters
● Two kinds of cluster

○ Kafka Cluster
■ Cluster of Kafka Brokers
■ Includes Zookeeper deployment
■ Using Stateful Sets for managing Kafka and Zookeeper

○ Kafka Connect Cluster
■ Distributed Kafka Connect cluster
■ Using Deployment
■ S2I support for adding additional plugins

Red Hat OpenShift Integration46

AMQ Streams on OCP
Cluster Operator - Supported Features

● Number of Zookeeper, Kafka and Kafka Connect nodes
● Configuration of Kafka and Kafka Connect
● Storage:

○ Persistent versus Ephemeral
○ Storage size

● Metrics exports for Prometheus
● Healthchecks

Red Hat OpenShift Integration47

AMQ Streams on OCP
Cluster Operator - Workflow

● One Cluster Operator can manage several clusters in parallel
○ Can cover one or more projects

● To deploy new cluster
○ [Deploy the Cluster Operator]
○ Create a Custom Resource Definitions describing the cluster
○ Cluster Operator will see the Custom Resource Definitions and start deploying the

cluster
○ The cluster will be deployed and ready to use

Red Hat OpenShift Integration48

AMQ Streams on OCP
Cluster Operator - Managing Cluster

● Clusters can be modified by modifying the Custom Resource Definition
○ Scale up / Scale down
○ Kafka Configuration

● Cluster Operator will update the cluster to match the desired state described in Custom
Resource Definition

● Update does not allow to change storage configuration
○ Such operation cannot be done without losing data

● Clusters can be deleted by deleting the Custom Resource Definition
○ All cluster resources will be removed
○ PVC will be deleted according to user configuration

● Deleting the Custom Resource Definition is irreversible

Red Hat OpenShift Integration49

AMQ Streams on OCP
Topic Operator - Topology

Zookeeper

Kafka

Topic
Operator

Topic CR

Manages topics

Red Hat OpenShift Integration50

AMQ Streams on OCP
Topic Operator - Main Features

● Creating and managing Kafka topics
● Some Kafka components (Streams, Connect) often create their own topics

○ Bi-directional synchronization
○ Changes done directly in Kafka/Zookeeper are applied to Custom Resource

Definitions
○ Changes done in Custom Resource Definitions are applied to Kafka topics

● Topic Operator solves this by using 3-way diff
○ Our own Zookeeper-based store
○ Apache Kafka / Zookeeper
○ Custom Resource Definitions

Red Hat OpenShift Integration51

AMQ Streams on OCP
Topic Operator - Managing Kafka Topics

Zookeeper
(Topic Operator’s own storage)

Kafka topics

Topic Operator
(3-way diff)

Topic CR

Red Hat OpenShift Integration52

AMQ Streams on OCP
Topic Operator - Naming

● Kafka gives user more freedom for naming than OpenShift
○ ConfigMaps configuring topics contain “name” field to define the name which is not

allowed for OpenShift resource
○ If such topic is created by Kafka, it will be mapped to a Config Map named after

specially encoded name
● Recommended to use only topic names which are allowed as OpenShift resource names

Red Hat OpenShift Integration53

AMQ Streams on OCP
User Operator - Topology

Zookeeper

Kafka

User
Operator

User CR

Manages user credentials and certificates

Red Hat OpenShift Integration54

AMQ Streams on OCP
User Operator

● Creating and managing Kafka users
● Unlike Topic Operator, does not sync any changes from the Kafka cluster with OCP
● It is not expected that the users will be managed directly in Kafka cluster in parallel with

the User operator
● User Credentials managed in a Secret
● Manages authorization rules

Red Hat OpenShift Integration55

AMQ Streams on OCP
Sample Kafka Cluster

Cluster
Operator

kafka-cluster

Zookeeper StatefulSet

Kafka StatefulSet

Topic Operator
zookeeper-0 zookeeper-1 zookeeper-2

kafka-broker-0 kafka-broker-1 kafka-broker-2

my-topic
topic

my-other-topic
topic

Red Hat OpenShift Integration56

AMQ Streams on OCP
Images Registry

● Images imported in Registry:
○ amqstreams-1/amqstreams10-kafka-openshift
○ amqstreams-1/amqstreams10-zookeeper-openshift
○ amqstreams-1/amqstreams10-topicoperator-openshift
○ amqstreams-1/amqstreams10-useroperator-openshift
○ amqstreams-1/amqstreams10-clusteroperator-openshift
○ amqstreams-1/amqstreams10-zookeeperstunnel-openshift
○ amqstreams-1/amqstreams10-kafkastunnel-openshift
○ amqstreams-1/amqstreams10-entityoperatorstunnel-openshift

https://axdesocp1regweb.central.inditex.grp/registry#/?namespace=amqstreams-1

Red Hat OpenShift Integration57

AMQ Streams on OCP
OCP Description

● AMQ Streams Operators installed as cluster-admin

$ sed -i s/myproject/amq-streams/g *.yaml \
 install/cluster-operator -n amq-streams
$ oc apply -f install/cluster-operator -n amq-streams

Red Hat OpenShift Integration58

AMQ Streams on OCP
Pods Resourcing

● Default values used for -Xms and -Xmx depends on where there is a memory request limit configured for
the container

○ JVM’s minimum and maximum memory will be set to a value corresponding to the limit.
○ If there is not memory limit, JVM’s minimum memory will be set to 128M and JVM’s maximum

memory will not be defined.
● Setting -Xmx, it is recommended to:

○ Set memory request and memory limit to the same value
○ Use a memory request that is at least 4 x the -Xmx value
○ Consider setting -Xms to the same value as -Xmx

● Containers doing lots of disk I/O will need to leave some memory available for use as operating system
page cache. On such containers, the requested memory should be significantly higher than the memory
used by the JVM

Red Hat OpenShift Integration59

AMQ Streams on OCP
Sample Kafka Cluster Definition

apiVersion: kafka.strimzi.io/v1alpha1
kind: Kafka
metadata:
 name: amq-streams-cluster
spec:
 kafka:
 replicas: 2
 # listeners, config, metrics, jvmOptions, resources
 storage:
 type: persistent-claim
 size: 12Gi
 zookeeper:
 replicas: 3
 # jvmOptions, resources
 storage:
 type: persistent-claim
 size: 5Gi
 entityOperator:
 # topicOperator, userOperator, tlsSidecar

Cloud Native Camel

Red Hat OpenShift Integration61

System Integration
Camel is the glue between disparate systems

● The swiss knife of integration
● >10 years of development - still one of the most active Apache projects
● Based on Enterprise Integration Patterns (EIP)
● Uses a powerful Domain Specific Language (DSL)
● Can integrate anything
● Supports 300+ components
● The cornerstone of Red Hat Fuse

http://camel.apache.org/

http://camel.apache.org/

Red Hat OpenShift Integration62

System Integration
Camel is the glue between disparate systems

System A System B?

● Different transports
● Different Data Model
● Asynchrony
● Failures

Red Hat OpenShift Integration63

Enterprise Integration Patterns
Camel is an integration framework based on Enterprise Integration Patterns

Red Hat OpenShift Integration64

System Integration
Camel is the glue between disparate systems

System A System BTransport A Transport B?

Red Hat OpenShift Integration65

Camel Runs Everywhere

Red Hat OpenShift Integration66

Camel Connects Everything

Red Hat OpenShift Integration67

Best Practices
● Camel is light-weight

○ Camel-core is 4mb
○ Camel can be added to a single

fat-jar via
■ Spring Boot
■ Wildfly Swarm
■ Vert.x

● Microservices favor stateless
applications but

○ If state is needed
■ Camel-infinispan
■ Camel-hazelcast
■ Camel-ignite
■ Camel-jpa
■ Camel-sql
■ Camel-kafka
■ Stateful-set (K8s)

● Camel supports
○ Kubernetes ConfigMap

■ Inject via ENV
■ Inject via files

○ Kubernetes Secrets
■ Inject via ENV
■ Inject via files

● Camel supports fault tolerance
○ Camel retry

■ onException
■ errorHandler

○ Circuit Breaker
■ camel-hystrix

Red Hat OpenShift Integration68

EIP Cloud Patterns

Red Hat OpenShift Integration69

EIP Cloud Patterns

Red Hat OpenShift Integration70

EIP Cloud Patterns

Jaeger UI

Red Hat OpenShift Integration71

Camel Cloud Capabilities
● Camel Zipkin
● Camel OpenTracing
● Camel Rest
● Camel Components
● Camel Retry
● Camel Hystrix

Red Hat OpenShift Integration72

Camel Cloud Future
● Apache Camel K

○ https://github.com/apache/camel-k
○ Blogs:

■ https://www.nicolaferraro.me/2018/10/15/introducing-camel-k/
■ https://www.nicolaferraro.me/2018/12/10/camel-k-on-knative/

https://github.com/apache/camel-k
https://www.nicolaferraro.me/2018/10/15/introducing-camel-k/
https://www.nicolaferraro.me/2018/12/10/camel-k-on-knative/

Apache Camel K

Red Hat OpenShift Integration74

What is Apache Camel K
● A lightweight integration platform based on Apache Camel, born on Kubernetes,

with serverless superpowers.
● Based on operator-sdk
● A community-driven project
● A subproject of Apache Camel started on August 31st, 2018

https://github.com/apache/camel-k

https://github.com/apache/camel-k

Red Hat OpenShift Integration75

What is Apache Camel K

// Lookup every second the 'www.google.com' domain name and log the

output

from(‘timer:dns?period=1s’)

 .routeId(‘dns’)

 .setHeader(‘dns.domain’)

 .constant(‘www.google.com’)

 .to(‘dns:ip’)

 .log(‘log:dns’);

1. Create a integration file (Java, Groovy, Kotlin, JS, XML…)

$ kamel run integration.groovy

2. Run it

3. It runs on Kubernetes

Camel DSL, based on
EIPs...

Red Hat OpenShift Integration76

Apache Camel K Architecture
Dev Environment Cloud

kamel CLI

Camel K
Operator

“Integration”
Custom

Resource

Running Pod

Live updates!

Fast redeploy!
Less than 1 second!

Tailored for cloud-native development experience

Apache Camel K
Performance

Red Hat OpenShift Integration78

Apache Camel K Performance

The operator understands the code so it can
● Choose the lightest runtime for the integration (e.g. Quarkus)
● Package a minimal set of components that are required by the code
● Fine tune Camel and JVM parameters based on the code
● Optimize creation of container images

Compared to a traditional spring-boot stack
● Requires less memory and cpu
● Does not require to generate a uber jar thus improving deployment speed

Red Hat OpenShift Integration79

Apache Camel K

A web-based integration platform (Syndesis).

Target:
● Citizen Integrators

Features:
● Multiple connectors built from Camel

components
● Few clicks to define a integration
● Graphical data mapping capabilities
● Design, expose or consume REST API
● Integrated with Apicur.io for API design
● Integrated with 3-scale for API management
● Now works with Camel K as runtime engine for

integrations!

Red Hat OpenShift Integration80

Apache Camel K Time to run an integration
… compared to the traditional spring-boot backend

Lower is better :)

Apache Camel K
And

Knative

Red Hat OpenShift Integration82

<<custom-resource>>

Build

Knative defines building blocks for “Serverless” applications (https://github.com/knative/).
A building block is a CRD with a controller (or “operator”) that manages its lifecycle.

<<custom-resource>>

...
<<custom-resource>>

...
<<custom-resource>>

...

Knative Build

<<custom-resource>>

Service

<<custom-resource>>

...
<<custom-resource>>

...
<<custom-resource>>

...

Knative Serving

<<custom-resource>>

Channel

<<custom-resource>>

...
<<custom-resource>>

...
<<custom-resource>>

...

Knative Eventing

Standardize building container images Auto-scaling and scale-to-zero Messaging for event-based applications

Camel K and Knative

https://github.com/knative/

Red Hat OpenShift Integration83

kind: Integration
apiVersion: camel.apache.org/v1alpha1
metadata:
 name: my-integration
spec:
 sources:
 - name: source.groovy
 content: |-
 from(“knative:channel/a”)
 .to(“http:my-host/api/path”)

from(“knative:channel/a”)
 .to(“http:my-host/api/path”);

Camel K Operator

Knative
profile?

kind: Service
apiVersion: serving.knative.dev/v1alpha1

yes

kind: Deployment
standard one

no

Knative Profile

Red Hat OpenShift Integration84

Kubernetes Namespace

There’s no container if no one needs it!

rest().post(“/path”)
 .to(“xx:system1”)
 .to(“xx:system2”)

300+ components!

System 1

System 2

Knative
Service

What does it mean?

Red Hat OpenShift Integration85

What does it mean?

Kubernetes Namespace

A container is created only when needed!

rest().post(“/path”)
 .to(“xx:system1”)
 .to(“xx:system2”)

300+ components!

System 1

System 2

Knative
Service

Request Pod

Red Hat OpenShift Integration86

What does it mean?

Kubernetes Namespace
rest().post(“/path”)
 .to(“xx:system1”)
 .to(“xx:system2”)

300+ components!

System 1

System 2

Knative
Service

Multiple containers under high load!

Request Pod

Request

Request

Pod

Pod

Red Hat OpenShift Integration87

Channel

Building blocks for event-based serverless applications.

Producers

https://cloudevents.io/

Kafka, In-memory, ...

Consumers

Subscription

Subscription

Subscription

Subscription

Mmh? Isn’t that like JMS?Knative Eventing

https://cloudevents.io/

Red Hat OpenShift Integration88

Kubernetes Namespace
from(“knative:channel/a”)
 .to(“xx:system1”)
 .to(“xx:system2”)

300+ components!

System 1

System 2

Channel a

Knative
Service

Knative
Subscription

PodCloud Event

https://cloudevents.io/

Knative Eventing

https://cloudevents.io/

Red Hat OpenShift Integration89

Same model for different purposes

Channel

Channel

Channel

Ext
System

Event
Source

EIP

Integration
Function

300+ components!

Camel K in Knative Eventing

Recap and What’s Next ...

Red Hat OpenShift Integration91

What is Istio?

https://learn.openshift.com/servicemesh/1-introduction

An open source service mesh providing fundamentals we need to run a distributed
microservices architecture

https://learn.openshift.com/servicemesh/1-introduction

Red Hat OpenShift Integration92

What is AMQ Streaming?
A high-performance data streaming capability based on Apache Kafka and Strimzi

Red Hat OpenShift Integration93

A lightweight integration platform, born on Kubernetes, with serverless superpowers.

Runs on “vanilla” Kubernetes (1), Openshift (2) and gives its best on a Knative-powered cluster (3)!

K

1.

K

2.

K

3.

What is Camel K?

Red Hat OpenShift Integration94

OperatorHub.io

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat OpenShift Integration96

Collateral
● http://developers.redhat.com/promotions/microservices-for-java-developers
● https://developers.redhat.com/books/introducing-istio-service-mesh-microservices/
● https://developers.redhat.com/books/adventures-aboard-kluster-kruise-ship/old/
● https://www.manning.com/books/camel-in-action-second-edition
● https://github.com/davsclaus/camel-riders-in-the-cloud/tree/webinar2019

http://developers.redhat.com/promotions/microservices-for-java-developers
https://developers.redhat.com/books/introducing-istio-service-mesh-microservices/
https://developers.redhat.com/books/adventures-aboard-kluster-kruise-ship/old/
https://www.manning.com/books/camel-in-action-second-edition
https://github.com/davsclaus/camel-riders-in-the-cloud/tree/webinar2019

Red Hat OpenShift Integration97

