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AGENDA

● Complexities of Microservices Architecture
● Service Mesh (Istio)
● AMQ Streaming (Kafka)
● Cloud Native Camel (Camel K)



Microservices Architecture
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Microservices Distributed Architecture
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Distributed Architecture



Dealing with Complexity
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Netflix OSS And Spring Cloud



Red Hat OpenShift Integration8

What About … ?
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There Should Be A 
Better Way



Service Mesh
A dedicated network for

Service-to-service communications
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Microservices Evolution
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Istio
● Istio is an open-source service mesh
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Istio - Service Mesh Architecture



Istio Features
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Istio - Fault Tolerance
Circuit Breakers - Without Istio
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Istio - Fault Tolerance
Circuit Breakers - With Istio
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Istio - Dynamic Routing
Routing - Without Istio
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Istio - Dynamic Routing
With Istio [A/B Deployment]
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Istio - Security
The Istio security features provide:

● Strong identity
● Powerful policy
● Transparent TLS encryption and

○ Authentication, Authorization and Audit (AAA) tools to protect your services and 
data
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Istio - Security
Kubernetes Scenario:

1. SPIFFE certificate (X.509) and key pair for each of the existing and new service 
accounts

2. Kubernetes mounts the certificate and key pair to a pod according to its service 
account via Kubernetes secret volume

3. Auto rotation of the certificates by rewriting the Kubernetes secrets
4. Secure naming generation and distribution to proxies

https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://istio.io/docs/concepts/security/#secure-naming
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Istio - Security
Mutual Authentication (mTLS) Scenario:

1. Client’s outbound traffic goes to its Envoy Proxy
2. The client side Envoy starts a mutual TLS handshake with the server side Envoy, does 

a secure naming check to verify that the service account is authorized
3. The client side Envoy and the server side Envoy establish a mutual TLS connection, 

and Istio forwards the traffic from the client side Envoy to the server side Envoy
4. After authorization, the server side Envoy forwards the traffic to the server service 

through local TCP connections
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Istio - Security
Authorization Scenario:

1. ClusterRbacConfig enables/disables (including selectively) Authorization in the mesh
2. ServiceRole and ServiceRoleBinding define the overall authorization
3. ServiceRole defines permissions to access services
4. ServiceRoleBinding bind the ServiceRole to Subjects.  Subjects can be Users (service 

accounts or properties)

More information here

https://istio.io/docs/concepts/security/#authorization


Red Hat OpenShift Integration23

Istio - Other Features
● Distributed Tracing
● Chaos Engineering
● Dark Launch
● More ...



Pulling It All Together
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OpenShift - Service Mesh



Red Hat AMQ Streams
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Red Hat AMQ Streams
Overview

Data streaming platform based on Apache Kafka.

Available standalone (RHEL) or on OpenShift (OCP).
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Red Hat AMQ Streams
What is Apache Kafka?

Apache Kafka is a distributed system 
designed for streams. It is built to be an 
horizontally-scalable, fault-tolerant, commit 
log, and allows distributed data streams and 
stream processing applications.
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Red Hat AMQ Streams
What is Apache Kafka?

● Developed at Linkedin back in 2010, open sourced in 2011
● Designed to be fast, scalable, durable and available
● Distributed by nature
● Data partitioning (sharding)
● High throughput / low latency
● Ability to handle huge number of consumers
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Red Hat AMQ Streams
What is AMQ Streaming for? Main Use Cases

Rebuild user activity tracking pipeline as a set 
of real-time publish-subscribe feeds. Activity 
is published to central topics with one topic 

per activity type.

Replacement of traditional message broker, 
has better throughput, built-in partitioning, 

replication, and fault-tolerance. Provides 
strong durability.

Messaging Website Activity Tracker
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Red Hat AMQ Streams
What is AMQ Streaming for? Main Use Cases

Aggregation of statistics from distributed 
applications to produce centralized feeds of 

operational data.

Abstracts details of files an gives event data as 
stream of messages. Offers good performance, 

stronger durability guarantees due to 
replication.

Metrics Log Aggregation
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Red Hat AMQ Streams
What is AMQ Streaming for? Main Use Cases

Stream Processing Data Integration

Enables continuous, real-time applications 
built to react to, process, or transform 

streams.

Captures streams of events or data changes 
and feeds these to other data systems.
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Red Hat AMQ Streams
Why should you use it?

● Scalability and Performance
○ Designed for horizontal scalability
○ Scaling has minimal impact on throughput and latency
○ Adding nodes to running cluster is easy
○ Different approaches: One big cluster vs. Several small clusters

● Message ordering guarantee
○ Messages are written to disk in the same order as received by the broker
○ Messages are read from disk from the requested offset
○ Kafka protocol makes sure that one consumer can read only one partition
○ Order is guaranteed only within a single partition!
○ No synchronization between producers!
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Red Hat AMQ Streams
Why should you use it?

● Message rewind/replay
○ Limited only by available disk space

■ Amount of stored messages has no impact on performance
○ Topic/Partition size has no direct impact on performance
○ Allows to reconstruct application state by replaying the messages
○ Combined with compacted topics allows to use Kafka as key-value store
○ Event source and/or Parallel Running patterns
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Red Hat AMQ Streams
What’s the catch?

● Kafka protocol cannot be proxied
○ Clients need access to all brokers in the cluster
○ Producers/consumers might need to maintain large number of TCP connections
○ Proxying via HTTP REST or AMQP could be a solution

● Dumb broker, smart clients
○ Carefully decide the “right” number of partitions for each topic
○ Adding partitions can change destination partition for “keyed” messages
○ Removing partitions is not possible



Red Hat AMQ Streams On OCP
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AMQ Streams on OCP
Supported Configurations

● Based on OSS project called Strimzi
● OpenShift Container Platform 3.9 and newer
● Apache Kafka Ecosystem 

○ Only the java components released directly from Apache Software Foundation 
○ Apache Kafka Broker
○ Apache Kafka Connect
○ Apache Kafka Streaming API
○ Apache Kafka Java Producer, Consumer and Management Clients
○ Apache Zookeeper (ONLY as an implementation detail of Apache Kafka)

● Source: Red Hat AMQ 7 Supported Configurations - AMQ Streams 1.0

https://access.redhat.com/articles/2791941#red-hat-amq-streams-10-11
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AMQ Streams on OCP
What is Strimzi?

Strimzi is a set of enabling services that allow 
Kafka to work in OpenShift as a first class 
citizen, be installed easily and configured and 
managed simply.
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AMQ Streams on OCP
What is Strimzi?

● Provides:
○ Docker images for running Apache Kafka and Zookeeper
○ Tooling for managing and configuring Apache Kafka clusters, topics and users

● Follows the Kubernetes Operator Model
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AMQ Streams on OCP
Goals

● Simplifying the Apache Kafka deployment on OpenShift
● Using the OpenShift native mechanisms for

○ Provisioning the cluster
○ Managing the topics

● Removing the need to use Kafka command-line tools
● Providing a better integration with applications running on OpenShift

○ Microservices, data streaming and even-sourcing
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AMQ Streams on OCP
Kubernetes Operators

● Observe: Monitor the current state of 
the application

● Analyze: Compare the actual state to 
the desire state

● Act: Resolve any differences between 
actual and desired state

Observe

Analyze

Act
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AMQ Streams on OCP
Kubernetes Operators

● Application-specific controller is used to create, configure and manage other complex 
application:

○ The controller contains specific domain/application knowledge
○ Usually used for stateful applications (databases, …) which are non-trivial to 

operate on Kubernetes/OpenShift
● Controller operates based on input from Config Maps or Custom Resource Definitions

○ User describes the desired state
○ Controller applies this state to the application
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AMQ Streams on OCP
AMQ Streams Operators

● Cluster Operator
● Topic Operator
● User Operator
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AMQ Streams on OCP
Cluster Operator - Topology

Zookeeper 

Kafka

Cluster 
Operator

Cluster CR

Manages
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AMQ Streams on OCP
Cluster Operator - Main Features

● Creating and managing Apache Kafka clusters
● Two kinds of cluster

○ Kafka Cluster
■ Cluster of Kafka Brokers
■ Includes Zookeeper deployment
■ Using Stateful Sets for managing Kafka and Zookeeper

○ Kafka Connect Cluster
■ Distributed Kafka Connect cluster
■ Using Deployment
■ S2I support for adding additional plugins



Red Hat OpenShift Integration46

AMQ Streams on OCP
Cluster Operator - Supported Features

● Number of Zookeeper, Kafka and Kafka Connect nodes
● Configuration of Kafka and Kafka Connect
● Storage:

○ Persistent versus Ephemeral
○ Storage size

● Metrics exports for Prometheus
● Healthchecks
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AMQ Streams on OCP
Cluster Operator - Workflow

● One Cluster Operator can manage several clusters in parallel
○ Can cover one or more projects

● To deploy new cluster
○ [Deploy the Cluster Operator]
○ Create a Custom Resource Definitions describing the cluster
○ Cluster Operator will see the Custom Resource Definitions and start deploying the 

cluster
○ The cluster will be deployed and ready to use
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AMQ Streams on OCP
Cluster Operator - Managing Cluster

● Clusters can be modified by modifying the Custom Resource Definition
○ Scale up / Scale down
○ Kafka Configuration

● Cluster Operator will update the cluster to match the desired state described in Custom 
Resource Definition

● Update does not allow to change storage configuration
○ Such operation cannot be done without losing data

● Clusters can be deleted by deleting the Custom Resource Definition
○ All cluster resources will be removed
○ PVC will be deleted according to user configuration

● Deleting the Custom Resource Definition is irreversible
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AMQ Streams on OCP
Topic Operator - Topology

Zookeeper 

Kafka

Topic 
Operator

Topic CR

Manages topics
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AMQ Streams on OCP
Topic Operator - Main Features

● Creating and managing Kafka topics
● Some Kafka components (Streams, Connect) often create their own topics

○ Bi-directional synchronization
○ Changes done directly in Kafka/Zookeeper are applied to Custom Resource 

Definitions
○ Changes done in Custom Resource Definitions are applied to Kafka topics

● Topic Operator solves this by using 3-way diff
○ Our own Zookeeper-based store
○ Apache Kafka / Zookeeper
○ Custom Resource Definitions
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AMQ Streams on OCP
Topic Operator - Managing Kafka Topics

Zookeeper 
(Topic Operator’s own storage)

Kafka topics

Topic Operator
(3-way diff)

Topic CR
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AMQ Streams on OCP
Topic Operator - Naming

● Kafka gives user more freedom for naming than OpenShift
○ ConfigMaps configuring topics contain “name” field to define the name which is not 

allowed for OpenShift resource
○ If such topic is created by Kafka, it will be mapped to a Config Map named after 

specially encoded name
● Recommended to use only topic names which are allowed as OpenShift resource names
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AMQ Streams on OCP
User Operator - Topology

Zookeeper 

Kafka

User 
Operator

User CR

Manages user credentials and certificates
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AMQ Streams on OCP
User Operator

● Creating and managing Kafka users
● Unlike Topic Operator, does not sync any changes from the Kafka cluster with OCP
● It is not expected that the users will be managed directly in Kafka cluster in parallel with 

the User operator
● User Credentials managed in a Secret
● Manages authorization rules
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AMQ Streams on OCP
Sample Kafka Cluster

Cluster 
Operator

kafka-cluster

Zookeeper StatefulSet

Kafka StatefulSet

Topic Operator
zookeeper-0 zookeeper-1 zookeeper-2

kafka-broker-0 kafka-broker-1 kafka-broker-2

my-topic
topic

my-other-topic
topic
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AMQ Streams on OCP
Images Registry

● Images imported in Registry:
○ amqstreams-1/amqstreams10-kafka-openshift
○ amqstreams-1/amqstreams10-zookeeper-openshift
○ amqstreams-1/amqstreams10-topicoperator-openshift
○ amqstreams-1/amqstreams10-useroperator-openshift
○ amqstreams-1/amqstreams10-clusteroperator-openshift
○ amqstreams-1/amqstreams10-zookeeperstunnel-openshift
○ amqstreams-1/amqstreams10-kafkastunnel-openshift
○ amqstreams-1/amqstreams10-entityoperatorstunnel-openshift

https://axdesocp1regweb.central.inditex.grp/registry#/?namespace=amqstreams-1
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AMQ Streams on OCP
OCP Description

● AMQ Streams Operators installed as cluster-admin

$ sed -i s/myproject/amq-streams/g *.yaml \
    install/cluster-operator -n amq-streams
$ oc apply -f install/cluster-operator -n amq-streams
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AMQ Streams on OCP
Pods Resourcing

● Default values used for -Xms and -Xmx depends on where there is a memory request limit configured for 
the container

○ JVM’s minimum and maximum memory will be set to a value corresponding to the limit.
○ If there is not memory limit, JVM’s minimum memory will be set to 128M and JVM’s maximum 

memory will not be defined.
● Setting -Xmx, it is recommended to:

○ Set memory request and memory limit to the same value
○ Use a memory request that is at least 4 x the -Xmx value
○ Consider setting -Xms to the same value as -Xmx

● Containers doing lots of disk I/O will need to leave some memory available for use as operating system 
page cache. On such containers, the requested memory should be significantly higher than the memory 
used by the JVM
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AMQ Streams on OCP
Sample Kafka Cluster Definition

apiVersion: kafka.strimzi.io/v1alpha1
kind: Kafka
metadata:
  name: amq-streams-cluster
spec:
  kafka:
    replicas: 2
    # listeners, config, metrics, jvmOptions, resources
    storage:
      type: persistent-claim
      size: 12Gi
  zookeeper:
    replicas: 3
    # jvmOptions, resources
    storage:
      type: persistent-claim
      size: 5Gi
  entityOperator:
    # topicOperator, userOperator, tlsSidecar



Cloud Native Camel
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System Integration
Camel is the glue between disparate systems

● The swiss knife of integration
● >10 years of development - still one of the most active Apache projects
● Based on Enterprise Integration Patterns (EIP)
● Uses a powerful Domain Specific Language (DSL)
● Can integrate anything
● Supports 300+ components
● The cornerstone of Red Hat Fuse

http://camel.apache.org/

http://camel.apache.org/
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System Integration
Camel is the glue between disparate systems

System A System B?

● Different transports
● Different Data Model
● Asynchrony
● Failures
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Enterprise Integration Patterns
Camel is an integration framework based on Enterprise Integration Patterns
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System Integration
Camel is the glue between disparate systems

System A System BTransport A Transport B?
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Camel Runs Everywhere
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Camel Connects Everything
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Best Practices
● Camel is light-weight

○ Camel-core is 4mb
○ Camel can be added to a single 

fat-jar via
■ Spring Boot
■ Wildfly Swarm
■ Vert.x

● Microservices favor stateless 
applications but

○ If state is needed 
■ Camel-infinispan
■ Camel-hazelcast
■ Camel-ignite
■ Camel-jpa
■ Camel-sql
■ Camel-kafka
■ Stateful-set (K8s)

● Camel supports
○ Kubernetes ConfigMap

■ Inject via ENV
■ Inject via files

○ Kubernetes Secrets
■ Inject via ENV
■ Inject via files

● Camel supports fault tolerance
○ Camel retry

■ onException
■ errorHandler

○ Circuit Breaker
■ camel-hystrix
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EIP Cloud Patterns
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EIP Cloud Patterns
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EIP Cloud Patterns

Jaeger UI
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Camel Cloud Capabilities
● Camel Zipkin
● Camel OpenTracing
● Camel Rest
● Camel Components
● Camel Retry
● Camel Hystrix
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Camel Cloud Future
● Apache Camel K

○ https://github.com/apache/camel-k
○ Blogs: 

■ https://www.nicolaferraro.me/2018/10/15/introducing-camel-k/
■ https://www.nicolaferraro.me/2018/12/10/camel-k-on-knative/

https://github.com/apache/camel-k
https://www.nicolaferraro.me/2018/10/15/introducing-camel-k/
https://www.nicolaferraro.me/2018/12/10/camel-k-on-knative/


Apache Camel K
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What is Apache Camel K
● A lightweight integration platform based on Apache Camel, born on Kubernetes, 

with serverless superpowers.
● Based on operator-sdk
● A community-driven project
● A subproject of Apache Camel started on August 31st, 2018

https://github.com/apache/camel-k

https://github.com/apache/camel-k
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What is Apache Camel K

// Lookup every second the 'www.google.com' domain name and log the 

output

from(‘timer:dns?period=1s’)

    .routeId(‘dns’)

    .setHeader(‘dns.domain’)

        .constant(‘www.google.com’)

    .to(‘dns:ip’)

    .log(‘log:dns’);

1. Create a integration file (Java, Groovy, Kotlin, JS, XML…)

$ kamel run integration.groovy

2. Run it

3. It runs on Kubernetes

Camel DSL, based on 
EIPs...
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Apache Camel K Architecture
Dev Environment Cloud

kamel CLI

Camel K 
Operator

“Integration” 
Custom 

Resource

Running Pod

Live updates!

Fast redeploy!
Less than 1 second!

Tailored for cloud-native development experience



Apache Camel K
Performance
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Apache Camel K Performance

The operator understands the code so it can
● Choose the lightest runtime for the integration (e.g. Quarkus)
● Package a minimal set of components that are required by the code
● Fine tune Camel and JVM parameters based on the code
● Optimize creation of container images

Compared to a traditional spring-boot stack
● Requires less memory and cpu 
● Does not require to generate a uber jar thus improving deployment speed
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Apache Camel K

A web-based integration platform (Syndesis).

Target: 
● Citizen Integrators

Features:
● Multiple connectors built from Camel 

components
● Few clicks to define a integration
● Graphical data mapping capabilities
● Design, expose or consume REST API
● Integrated with Apicur.io for API design
● Integrated with 3-scale for API management
● Now works with Camel K as runtime engine for 

integrations!
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Apache Camel K Time to run an integration
… compared to the traditional spring-boot backend

Lower is better :)



Apache Camel K
And

Knative
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<<custom-resource>>

Build

Knative defines building blocks for “Serverless” applications (https://github.com/knative/).
A building block is a CRD with a controller (or “operator”) that manages its lifecycle.

<<custom-resource>>

...
<<custom-resource>>

...
<<custom-resource>>

...

Knative Build

<<custom-resource>>

Service

<<custom-resource>>

...
<<custom-resource>>

...
<<custom-resource>>

...

Knative Serving

<<custom-resource>>

Channel

<<custom-resource>>

...
<<custom-resource>>

...
<<custom-resource>>

...

Knative Eventing

Standardize building container images Auto-scaling and scale-to-zero Messaging for event-based applications

Camel K and Knative

https://github.com/knative/
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kind: Integration
apiVersion: camel.apache.org/v1alpha1
metadata:
  name: my-integration
spec:
  sources:
  - name: source.groovy
    content: |-
      from(“knative:channel/a”)
        .to(“http:my-host/api/path”)

from(“knative:channel/a”)
  .to(“http:my-host/api/path”);

Camel K Operator

Knative 
profile?

kind: Service
apiVersion: serving.knative.dev/v1alpha1

yes

kind: Deployment
# standard one

no

Knative Profile
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Kubernetes Namespace

There’s no container if no one needs it!

rest().post(“/path”)
  .to(“xx:system1”)
  .to(“xx:system2”)

300+ components!

System 1

System 2

Knative 
Service

What does it mean?
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What does it mean?

Kubernetes Namespace

A container is created only when needed!

rest().post(“/path”)
  .to(“xx:system1”)
  .to(“xx:system2”)

300+ components!

System 1

System 2

Knative 
Service

Request Pod
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What does it mean?

Kubernetes Namespace
rest().post(“/path”)
  .to(“xx:system1”)
  .to(“xx:system2”)

300+ components!

System 1

System 2

Knative 
Service

Multiple containers under high load!

Request Pod

Request

Request

Pod

Pod
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Channel

Building blocks for event-based serverless applications.

Producers

https://cloudevents.io/

Kafka, In-memory, ...

Consumers

Subscription

Subscription

Subscription

Subscription

Mmh? Isn’t that like JMS?Knative Eventing

https://cloudevents.io/
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Kubernetes Namespace
from(“knative:channel/a”)
  .to(“xx:system1”)
  .to(“xx:system2”)

300+ components!

System 1

System 2

Channel a

Knative 
Service

Knative 
Subscription

PodCloud Event

https://cloudevents.io/

Knative Eventing

https://cloudevents.io/
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Same model for different purposes

Channel

Channel

Channel

Ext 
System

Event 
Source

EIP

Integration 
Function

300+ components!

Camel K in Knative Eventing



Recap and What’s Next ...
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What is Istio?

https://learn.openshift.com/servicemesh/1-introduction

An open source service mesh providing fundamentals we need to run a distributed 
microservices architecture

https://learn.openshift.com/servicemesh/1-introduction


Red Hat OpenShift Integration92

What is AMQ Streaming?
A high-performance data streaming capability based on Apache Kafka and Strimzi



Red Hat OpenShift Integration93

A lightweight integration platform, born on Kubernetes, with serverless superpowers.

Runs on “vanilla” Kubernetes (1), Openshift (2) and gives its best on a Knative-powered cluster (3)!

K

1.

K

2.

K

3.

What is Camel K?
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OperatorHub.io



THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat
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Collateral
● http://developers.redhat.com/promotions/microservices-for-java-developers
● https://developers.redhat.com/books/introducing-istio-service-mesh-microservices/
● https://developers.redhat.com/books/adventures-aboard-kluster-kruise-ship/old/
● https://www.manning.com/books/camel-in-action-second-edition
● https://github.com/davsclaus/camel-riders-in-the-cloud/tree/webinar2019

http://developers.redhat.com/promotions/microservices-for-java-developers
https://developers.redhat.com/books/introducing-istio-service-mesh-microservices/
https://developers.redhat.com/books/adventures-aboard-kluster-kruise-ship/old/
https://www.manning.com/books/camel-in-action-second-edition
https://github.com/davsclaus/camel-riders-in-the-cloud/tree/webinar2019


Red Hat OpenShift Integration97


