
Developing Microservices with 
Istio Service Mesh

Kevin Conner
Engineering Manager
Istio Engineering
Red Hat



MICROSERVICES ARCHITECTURE

Runtime

Service

Runtime

Service

Runtime

Service

Runtime

Service

Runtime

Service

Runtime

Service

Runtime

Service

Application Server

HTML Javascript Web

ServiceServiceService

Service Service Service

Data Access

Runtime

Service

Runtime

Service



MICROSERVICES ARCHITECTURE

Runtime

Service

Runtime

Service

Runtime

Service

Runtime

Service

Runtime

Service

Runtime

Service

Runtime

Service

Application Server

HTML Javascript Web

ServiceServiceService

Service Service Service

Data Access

DISTRIBUTED

Runtime

Service

Runtime

Service



DISTRIBUTED ARCHITECTURE

Service ServiceService

Service ServiceService

Service ServiceService



EIGHT FALLACIES OF DISTRIBUTED COMPUTING

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

Source: https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
Photo: Icon made by Freepik from www.flaticon.com  



HOW TO DEAL WITH THE 
COMPLEXITY?

Photo by Clint Adair on Unsplash

https://unsplash.com/photos/BW0vK-FA3eg?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/network?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Difficulty of deploying microservices

● Service discovery
● Retries
● Timeouts
● Circuit breaking
● Rate limiting
● Load balancing



Difficulty of deploying on cloud infrastructure

● Edge / DMZ routing (ingress/egress)
● Surgical / fine / per-request routing
● A/B testing
● Traffic shaping
● Internal release / dark launch
● Request shadowing
● Fault injection



Difficulty of deploying on cloud infrastructure

● Adaptive, zone-aware load balancing
● Health checking (active/passive)
● Stats/metrics/telemetry
● Logging
● Distributed tracing



Security!!



WHAT DO DISTRIBUTED SYSTEMS NEED?

INFRA

INFRA OPS

SERVICE OPS

SERVICE

Spring Cloud
Config Server

Netflix EurekaNetflix Zuul
Server ZipKin Server

Service

Config

Service

Config

Service

Config

Svc Discovery Svc Discovery Svc Discovery

Routing Routing Routing

Circuit Breaker Circuit Breaker Circuit Breaker

Tracing Tracing Tracing

Netflix RibbonNetflix Hystrix
Netflix Turbine

Physical Virtual Cloud



Service

Config

Svc Discovery

Routing

Circuit Breaker

Tracing

AN OPERATION NIGHTMARE!

Infra capabilities are tightly coupled 
with applications and services 

✖ Incompatible across languages and frameworks
✖ Existing apps require refactoring
✖ Upgrades needs tight coordination - libraries



THERE SHOULD BE A 
BETTER WAY



INFRA

INFRA OPS

SERVICE OPS

SERVICE

KUBERNETES

DISTRIBUTED SERVICES WITH KUBERNETES

Deployment Resiliency   ⁞   Service Discovery ⁞   Service Invocation   ⁞   Config Management   ⁞   Resource Management   ⁞   
Elasticity

Physical Virtual Cloud

Container Infrastructure



INFRA

INFRA OPS

SERVICE OPS

SERVICE

DISTRIBUTED SERVICES WITH OPENSHIFT

OPENSHIFT
THE ENTERPRISE KUBERNETES

Build Automation ⁞ Logs  ⁞  Monitoring   ⁞   Infra Security   ⁞  Release Management  ⁞   Load Balancing
Deployment Resiliency   ⁞   Service Discovery   ⁞   Config   ⁞   Resource Management   ⁞   Elasticity

Physical Virtual Cloud

Container Infrastructure



OPENSHIFT
THE ENTERPRISE KUBERNETES

DISTRIBUTED SERVICES WITH 
ISTIO SERVICE MESH

INFRA

INFRA OPS

SERVICE OPS

SERVICE

Build Automation ⁞ Logs  ⁞  Monitoring   ⁞   Infra Security   ⁞  CI/CD  ⁞   Load Balancing
Deployment Resiliency   ⁞   Service Discovery   ⁞   Config   ⁞   Resource Management   ⁞   Elasticity

Istio SERVICE MESH
Load Balancing ⁞ Fault Tolerance ⁞ Traceability ⁞ Observability  ⁞  Service Security   ⁞   Infra Security   ⁞  Chaos Engineering  ⁞  Traffic Control

Physical Virtual Cloud

Container Infrastructure



● Envoy Proxy (used in Istio as Istio proxy)
● L3/4 network filter, out of the box L7 

filters (HTTP, HTTP2, gRPC)

● Service discovery, load balancing, circuit 
breaking, metrics collection, timeouts, 
retries, rate limiting, distributed tracing, 
et al

● Written in C++

● Dynamic configuration

USE A SERVICE PROXY



● A utility container in the same pod to 
enhance the main container’s 
functionality

● Share the same network and lifecycle
● Istio uses an Istio Proxy sidecar to 

proxy all network traffic between apps

Source: http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html 

SIDECAR PATTERN

POD

APP

SIDECAR

http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html


● Service resiliency
● Observability
● Traffic control
● Security
● Policy Enforcement
● Chaos Testing

WHAT DOES ISTIO GIVE ME?



HTTP1.1, HTTP2, gRPC, TCP w/TLS

istioctl, API, config Quota, Telemetry
Rate Limiting, ACL

CA, SPIFFE

Istio Service Mesh

POD

SERVICE A

Istio Proxy

POD

SERVICE B

Istio Proxy

POD

SERVICE C

Istio Proxy

Pilot Telemetry and Policy Citadel

HTTP1.1, HTTP2, gRPC, TCP w/TLS

Data Plane

Control Plane

Istio
Control 
Plane



SERVICE MESH ECOSYSTEM

Observe Observe

Secure

ControlConnect

Jaeger

Kiali Grafana

Prometheus



Istio In Action



Red Hat

OBSERVABILITY



PROMETHEUS

ISTIO MONITORING

GRAFANA

POD

SERVICE A

Istio Proxy

POD

SERVICE A

Istio Proxy

Pilot

POD

SERVICE A

Istio Proxy

Citadel
Control 
PlaneMixerAdapter API

TelemetryLogging Auth Quota

Check & Report

Prometheus    
Adapter

Backend



FEATURES:
● Service graph representation
● Distributed tracing (via Jaeger)
● Metrics collection and graphs (from Prometheus)
● Configuration validation
● Health computation/display
● Service discovery

KIALI - SERVICE MESH OBSERVABILITY



Red Hat

TRACING



Jaeger Collector

ISTIO TRACING

POD

SERVICE A

Istio Proxy

POD

SERVICE A

Istio Proxy

POD

SERVICE A

Istio Proxy

Istio 
System

Control 
Plane

Traces



Red Hat

TRAFFIC CONTROL



CANARY DEPLOYMENT WITH ISTIO

POD

SERVICE
A

Istio Proxy

POD

SERVICE
B:v3

Istio Proxy

POD

SERVICE
B:v2

Istio Proxy

boston employee

everyone



WEIGHTED ROUTING WITH ISTIO

POD

SERVICE
A

Istio Proxy

POD

SERVICE
B:v2

Istio Proxy

POD

SERVICE
B:v1

Istio Proxy

5% traffic

95% traffic



DARK LAUNCHES WITH ISTIO

POD

SERVICE
A

ENVOY

POD

SERVICE
B:v2

ENVOY

POD

SERVICE
B:v1

ENVOY

100% traffic

mirror traffic



Red Hat

SERVICE SECURITY



SECURE COMMUNICATION WITH ISTIO

POD

SERVICE
A

Istio Proxy

POD

SERVICE
B

Istio Proxy

POD

SERVICE
C

Istio Proxy

mutual TLS authentication, transparent to the services

TLS TLS



CONTROL SERVICE ACCESS WITH MUTUAL TLS

POD

SERVICE
A

Istio Proxy

POD

SERVICE
B

Istio Proxy

POD

SERVICE
C

Istio Proxy

control the service access flow, transparent to the services



CONTROL SERVICE ACCESS WITH END USER AUTHENTICATION

POD

SERVICE
A

Istio Proxy

control the service access flow, transparent to the services

Client JSON Web Token 



Red Hat

FAULT TOLERANCE



CIRCUIT BREAKERS WITH ISTIO

POD

SERVICE
A

Istio Proxy

POD

SERVICE
B

Istio Proxy

POD

SERVICE
C

Istio Proxy

transparent to the services



CIRCUIT BREAKERS WITH ISTIO

POD

SERVICE
A

Istio Proxy

POD

SERVICE
B

Istio Proxy

POD

SERVICE
C

Istio Proxy

transparent to the services



TIMEOUTS AND RETRIES WITH ISTIO

POD

SERVICE
A

ENVOY

POD

SERVICE
B

ENVOY

POD

SERVICE
C

ENVOY

configure timeouts and retries, transparent to the services

timeout: 10 sec
retry: 5 

timeout: 15 sec
retry: 5 



RATE LIMITING WITH ISTIO

POD

SERVICE
A

ENVOY

POD

SERVICE
B

ENVOY

POD

SERVICE
C

ENVOY

limit invocation rates, transparent to the services

max 500 
concurrent reqs

max 100 
connections



Red Hat

CHAOS ENGINEERING



CHAOS ENGINEERING WITH ISTIO

POD

SERVICE
A

ENVOY

POD

SERVICE
B

ENVOY

POD

SERVICE
C

ENVOY

inject delays, transparent to the services

10 sec delay 
in 10% of requests



CHAOS ENGINEERING WITH ISTIO

inject protocol-specific errors, transparent to the services

POD

SERVICE
A

ENVOY

POD

SERVICE
B

ENVOY

POD

SERVICE
C

ENVOY

HTTP 400
in 5% of requests



Red Hat

RED HAT OPENSHIFT 
SERVICE MESH



● Supported distribution of 
○ Istio
○ Jaeger
○ Kiali 
○ Prometheus
○ Grafana

● Upstream project called Maistra
https://github.com/Maistra

● Integrated with Red Hat OpenShift 
Application Runtimes (RHOAR)

● Integrated with Red Hat 3scale 
API Management

OPENSHIFT SERVICE MESH

https://github.com/Maistra


Red Hat

RESOURCES



Demo: bit.ly/msa-instructions
Slides: bit.ly/microservicesdeepdive 
Video Training: bit.ly/microservicesvideo

bit.ly/reactivemicroservi
cesbookbit.ly/javamicroservice

sbook

bit.ly/mono2microdb

Kubernetes for Java Developers

https://www.manning.co
m/books/istio-in-actionbit.ly/istio-book

http://bit.ly/msa-instructions
http://bit.ly/microservicesdeepdive
http://bit.ly/microservicesvideo
http://bit.ly/reactivemicroservicesbook
http://bit.ly/reactivemicroservicesbook
http://bit.ly/javamicroservicesbook
http://bit.ly/javamicroservicesbook
http://bit.ly/mono2microdb
https://www.youtube.com/watch?v=_vM3ORa9_JE
http://bit.ly/reactivemicroservicesbook


Self-paced Labs
learn.openshift.com/servicemesh

WORKSHOPS

GitHub
bit.ly/istio-tutorial

https://github.com/thoraxe/istio-lab-summit-2019

https://learn.openshift.com/servicemesh/
http://bit.ly/istio-tutorial
https://github.com/thoraxe/istio-lab-summit-2019


Questions?


