
Veer Muchandi
Chief Architect -Container Solutions, NA Commercial
@VeerMuchandi

Network Security for Containerized
Applications

Agenda
Kubernetes and SDN Choices

OpenShift and OpenShift SDN

Typical network security questions on an Enterprise Cluster

- Restricting traffic across tiers
- Handling network zones and isolation
- Securing Egress
- Securing Ingress
- Securing communications between Nodes
- Application Network Security

Kubernetes is a clear winner in the world of
Container Orchestration and Management

Kubernetes

WHAT DOES IT TAKE TO MAKE K8S ENTERPRISE
READY?

How do I support my K8S cluster? version upgrades, fixes/patches etc

You’ll need a lot more on your cluster than Kubernetes itself..

5 CONFIDENTIAL - FOR INTERNAL USE ONLY

K8S REQUIRES A SECURE ENTERPRISE GRADE
LINUX CONTAINER HOST

Kubernetes

Red Hat Enterprise Linux or Red Hat CoreOS

Kubernetes (CNI, CSI)

Red Hat Enterprise Linux or Red Hat CoreOS

K8S CLUSTER REQUIRES NETWORKING AND
STORAGE SOLUTIONS

Software Defined Network, Storage Solution

#SecuritySymposium

Software Defined Network Choices

For Network solution, K8S uses CNI

OpenShift
SDN

(OVS)

KUBERNETES CNI

Flannel** Nuage
Tigera

Calico &
CNX

Juniper
Contrail

Cisco
Contiv &

Contiv-ACI
Big Switch VMware

NSX-T
kuryr-

kubernetes

OpenShift
SDN

(OVN*)

Open
Daylight
(CNI &
Kuryr)

RH-OSP
Neutron
Plugin

Kubernetes (CNI, CSI)

Red Hat Enterprise Linux or Red Hat CoreOS

K8S CLUSTER REQUIRES LIFECYCLE MGMT FOR
DEVELOPERS AND OPERATORS

Software Defined Network, Storage

Developer Console, Operations Console, Lifecycle Mgmt, Automated Operations

Kubernetes (CNI, CSI)

Red Hat Enterprise Linux or Red Hat CoreOS

YOU’LL NEED CONTAINER REGISTRY, LOGGING,
METRICS, CHARGEBACK CAPABILITIES

Software Defined Network, Storage

Developer Console, Operations Console, Lifecycle Mgmt, Automated Operations

Cluster
Services

Metrics

Registry Logging

Chargeback

Kubernetes (CNI, CSI)

Red Hat Enterprise Linux or Red Hat CoreOS

YOU’LL NEED TO STANDARDIZE ON MIDDLEWARE, A
SERVICE CATALOG, AND MICROSERVICE MGMT

Software Defined Network, Storage

Developer Console, Operations Console, Lifecycle Mgmt, Automated Operations

*coming soon

Cluster
Services

Metrics

Registry Logging

Chargeback

Application
Services

Middleware
Images

Service
Catalog

Service
Mesh

Service
Broker

Kubernetes (CNI, CSI)

Red Hat Enterprise Linux or Red Hat CoreOS

DEVELOPERS NEED IDEs, BUILD MGMT, CICD,
DEBUGGING FEATURES AND MORE..

Software Defined Network, Storage

Developer Console, Operations Console, Lifecycle Mgmt, Automated Operations

Cluster
Services

Metrics

Registry Logging

Chargeback

Application
Services

Middleware
Images

Service
Catalog

Service
Mesh

Service
Broker

Developer
Services

Developer
Tools

CI/CD

IDE Automation

Kubernetes (CNI, CSI)

Red Hat Enterprise Linux or Red Hat CoreOS

THIS MAKES A REFERENCE ARCHITECTURE
FOR ENTERPRISE KUBERNETES

Openshift SDN, Red Hat OCS (add on)

Developer Console, Operations Console, Lifecycle Mgmt, Automated Operations*

Cluster
Services

Metrics

Registry Logging

Chargeback

Application
Services

Middleware
Images

Service
Catalog

Service
Mesh*

Service
Broker

Developer
Services

Developer
Tools

CI/CD

IDE Automation

aka OPENSHIFT

15

OPENSHIFT NETWORK PLUGINS

OpenShift
SDN

(OVS)

OPENSHIFT

KUBERNETES CNI

Flannel** Nuage
Tigera

Calico &
CNX

Juniper
Contrail

Cisco
Contiv &

Contiv-ACI
Big Switch

Fully Supported Validated

VMware
NSX-T

In-Progress

DEFAULT

kuryr-
kubernetes

OpenShift
SDN

(OVN*)

* Coming as default in OCP 4.1
** Flannel is minimally verified and is supported only and exactly as deployed in the OpenShift on OpenStack reference architecture

Open
Daylight
(CNI &
Kuryr)

RH-OSP
Neutron
Plugin

#SecuritySymposium

Typical Network Questions

#SecuritySymposium

1. Restricting traffic across tiers

Traffic Restrictions Across Application Tiers

Allowed connections

Disallowed connections

How can we restrict traffic across
Application Tiers?

Network Policy Objects
Enables Microsegmentation

Allows configuring individual policies at the Pod Level

Apply to ingress traffic for pods and services

Allows restricting traffic between the pods within a project/namespace

Allows traffic to specific pods from other projects/namespaces

Network Policy Objects

PROJECT A

POD

POD

POD

POD

PROJECT B

POD

POD

POD

POD

Example Policies
● Allow all traffic inside the project
● Allow traffic from green to gray
● Allow traffic to purple on 8080

✓

✓

8080

5432

✓

apiVersion: extensions/v1beta1
kind: NetworkPolicy
metadata:
 name: allow-to-purple-on-8080
spec:
 podSelector:
 matchLabels:
 color: purple
 ingress:
 - ports:
 - protocol: tcp
 port: 8080

✓

Example

Video: https://blog.openshift.com/network-policy-objects-action/

https://blog.openshift.com/network-policy-objects-action/

Hack

Network Policy Objects to Rescue

kind: NetworkPolicy
apiVersion: extensions/v1beta1
metadata:
 name: allow-3306
spec:
 podSelector:
 matchLabels:
 app: mysql
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: emailsvc
 ports:
 - protocol: TCP
 port: 3306

Allow MySQLDB connection from
Email Service

Start with Default Deny
All ingress traffic to any
pods is rejected

Add Network Policies To Allow Specific Incoming
Traffic

#SecuritySymposium

2. Isolating zones

External traffic allowed to touch
DMZ

Network Zones separated by Firewalls

Holes punched in firewalls to allow
specific traffic from

DMZ to Application Zone

and from

Application Zone to Data Zone

How do I setup K8S/OpenShift
here?

Useful to demonstrate compliance
with Security Standards and
Regulations

Additional actions needed to protect
Master APIs, and other URLs in
DMZ that are not supposed to be
exposed to Internet

Cost of maintenance is high

Option 1: OpenShift cluster per Zone

Option 2: OpenShift Cluster covering Multiple Zones

Application pods run on one Cluster.
Microsegmented with Network
Security policies.

Infra Nodes in each zone run Ingress
and Egress pods for specific zones

If required, physical isolation of pods
to specific nodes is possible with
node-selectors. But that defeats the
purpose of a shared cluster.
Microsegmentation with SDN is the
way to go.

#SecuritySymposium

3. Securing Egress

Connecting via External Service

Application connecting to External System talks to an External Service whose Endpoint is set as
Destination IP & Port
Or a Fully qualified domain name (FQDN) of the external system and port

But, what if we have a firewall in front of the External System that allows only Specific IPs?

Connecting via Egress Router

Static IP for all traffic from a Project

Static IP for all traffic from a Project

High availability
scenario

Egress Firewall to Limit Access
Cluster admin can limit the external addresses accessed by some or all pods
from within the cluster Examples:

A pod can talk to hosts (outside
OpenShift cluster) but cannot
connect to public internet

A pod can talk to public internet, but
cannot connect to hosts (outside
OpenShift cluster)

A pod cannot reach specific
subnets/hosts

#SecuritySymposium

4. Securing Ingress

OpenShift Router as Ingress

Can I restrict access to route?

Route Specific IP Whitelists

- Restrict access to a route to a select IP address(es)
- Annotate the route with the whitelisted/allowed IP addresses
- Connections from any other IPs are blocked

metadata:

 annotations:

 haproxy.router.openshift.io/ip_whitelist: 192.168.1.10 192.168.1.11

What about ingress traffic on ports that are
not 80 or 443?

Binds service to a unique port on every node in
the cluster

Port randomly assigned or optionally picked
from port range 30000-32767

All nodes act as ingress point at the port
assigned

Every node in the cluster redirects traffic to
service service endpoints even if a
corresponding pod is not running on that node

Firewall rules should not prevent nodes
listening on these ports

Every exposed service uses up a port on
all the nodes in a cluster. Are there
alternatives?

Using NodePort as Ingress to Service

Connect to

Admin defines ExternalIP address range.
Assigns these extra IPs to nodes.

OpenShift assigns both internal IP and external
IP to a service. Or a specific External IP can be
chosen.

Node to which ExternalIP is assigned acts as
the ingress point to the service.

ExternalIP can be a VIP. You can set up
ipfailover to reassign VIP to other nodes.
Ipfailover runs as a privileged pod and handles
VIP assignment.

Assigning External IP to a Service with Ingress

#SecuritySymposium

5. Securing communications
between nodes

42

Secured Communications between Hosts

Secures cluster communications
with IPsec

● Encryption between all
Master and Node hosts (L3)

● Uses OpenShift CA and
existing certificates

● Simple setup via policy defn
○ Groups (e.g. subnets)
○ Individual hosts

#SecuritySymposium

6. Security at Application Level

SSL at Ingress (with OpenShift Routes)
Edge termination

Passthrough termination

Reencrypt

Layer 7 Application Security

Application specific monitoring East-West
container traffic

Web Application Firewalls

Granular traffic control, Packet
Inspections

Denial of Service, Ransomware, Viruses
Detection and Mitigation

Runtime Security, Forensics, Incident
capture, Audits, Alerts

Container runtime monitoring

Partner Solutions

#SecuritySymposium

7. (Tech Preview) Application
network security with Istio

Istio Concepts - Sidecar Proxy

47

SideCar Proxy
- Intercepts all network communication between microservices
- Encapsulates Service Infrastructure code
- Application code (business logic) unaware of Sidecar proxy
- Examples - Linkerd, Envoy

Istio Concepts - Service Mesh

48

Network of Microservices

Service Mesh is a dedicated
infrastructure layer to handle
service-service
communications

Typically implemented as an
array of lightweight network
proxies deployed alongside
application code

Interconnected Proxies form a
mesh network

Istio Service Mesh on OpenShift

Connect, Manage, and Secure
Microservices, transparently

● Intelligent Routing
● Load Balancing
● Service Resilience
● Telemetry and Reporting
● Policy Enforcement
● Content based Filtering

(Layer 7)
● mTLS between services
● East-West traffic control

Application Traffic Encryption with Istio Auth (Future)

Uses Service Account as
Identity. SPIFFE Id format

spiffe://<domain>/ns/<namespace>/sa/<serviceaccount>

Mutual TLS between sidecars

Istio CA

- Generate cert pair and
SPIFFE key for each SA

- Distribute key and cert pairs
- Rotate keys and certs

periodically
- Revoke key and cert when

need

#SecuritySymposium

Questions?

#SecuritySymposium

THANK YOU

#SecuritySymposium

OpenShift SDN Overview

Kubernetes uses CNI

OpenShift
SDN

(OVS)

KUBERNETES CNI

Flannel** Nuage
Tigera

Calico &
CNX

Juniper
Contrail

Cisco
Contiv &

Contiv-ACI
Big Switch

Fully Supported Validated

VMware
NSX-T

In-Progress

DEFAULT

kuryr-
kubernetes

OpenShift
SDN

(OVN*)

* Coming as default in OCP 4.1
** Flannel is minimally verified and is supported only and exactly as deployed in the OpenShift on OpenStack reference architecture

Open
Daylight
(CNI &
Kuryr)

RH-OSP
Neutron
Plugin

OpenShift Networking
Software Defined Networking (SDN) for pod-pod communication

- Configures overlay network using Open vSwitch (OVS)
- Three types of plugins

- ovs-subnet : flat network every pod can talk to every other pod
- ovs-multitenant: project level isolation for pod-pod communication.

Unique VNID per project

You can join projects to get them the same VNID

‘default’ project (VNID 0) privileged to communicate with other pods

- ovs-networkpolicy: fine-grained isolation using network policy objects

OpenShift Installation Defaults
Cluster network CIDR: 10.128.0.0/14

Gives 32-14=18 bits or the ip address range of 10.128.0.0 - 10.131.255.255

Host subnet length: 9 bits (32-9=23)

Subnet for each node is /23. Gets 512 ip addresses per node.

Leaves 9 bits for nodes ((32-9)-14=9). Allows 29=512 subnets that can be
assigned to nodes

Subnets: 10.128.0.0/23, 10.128.2.0/23, …10.131.254.0/23

Master Portal Net (services): 172.30.0.0/16

OpenShift SDN manages Node Registry

Master allocates a subnet to the node.

Node creation - Allocated subnet added to Node Registry

Node deletion - subnet removed from the Node Registry

On node creation,SDN registers the host with the SDN
master

OpenShift SDN configures network devices on Node

br0 Pod containers attached to this ovs bridge
device. Non subnet specific flow rules on br0

tun0 For external network access via NAT. Cluster
subnet gateway address assigned. Configures
netfilter and routing rules.

vxlan0 Access to other nodes. OVS VxLAN device

additional node added:

- Watch subnet updates from master
- Add OpenFlow rules on br0 to push traffic to

the newly added subnet go to vxlan0

OpenShift SDN Pod Creation

- Assigns an available ip address from the
node’s cluster subnet to the pod

- Attaches host side of pod’s veth interface pair
to br0

- Adds OpenFlow rules to OVS DB to route
traffic addressed to the new pod to correct
OVS port

- For ovs-multitenant, adds OpenFlow rules
- to attach pod’s VNID to outgoing traffic
- allow traffic to pod when VNID matches

Pod to Pod Traffic - Both pods on the same Node

Flow of traffic

eth0(in A’s netns) - vethA - br0 - vethB - eth0(in B’s netns)

* Peer vEthernet device for container A is named ethA and for container B is named ethB

Pod to Pod Traffic - Pods on two different Nodes
Flow of traffic

eth0(in A’s netns) - vethA - br0 - vxlan0 - network - vxlan0 - br0- vethB - eth0(in B’s netns)

* Peer vEthernet device for container A is named ethA and for container B is named ethB

Pod to External Systems outside OpenShift
Flow of traffic

eth0(in A’s netns) - vethA - br0 - tun0 - (NAT) - eth0(physical device) - Internet

Kubernetes/OpenShift
Core Concepts

Openshift/K8S runs containers
in Pods. Pod is a wrapper

Each pod gets an IP address.
Container adopts Pod’s IP.

10.0.0.1

Pods

10.1.0.2
Some pods may have more
than one container.. that’s a
special case though!!

10.0.0.1

All the containers in a pod
die along with a pod.

Usually these containers are
dependent like a master and
slave or side-car pattern
And they have a very tight
married relationship

Containers in Pods

When you scale up your
application, you are scaling up
pods.

Each Pod has its own IP.

10.1.0.110.0.0.410.0.0.1

Pod Scaling

Nodes are the application hosts that make up a
Openshift/K8S cluster. They run docker and Openshift.
Master controls where the pods are deployed on the
nodes, and ensures cluster health.

Nodes

When you scale up, pods are distributed across nodes
following scheduler policies defined by the administrator.
So even if a node fails, the application is still
available

High Availability

Not just that, if a pod dies for some reason, another pod
will come in its place

Health Management

Pods can be front-ended by a Service.
Service is a proxy.. Every node knows
about it. Service gets an IP

Service knows which pods to frontend
based on the labels.

Flexibility of architecture with Openshift/ K8S Services

Clients can talk to the service. Service
redirects the requests to the pods.

Service also gets a DNS Name

Client can discover service… built in
service discovery!!

Built-in Service Discovery

Accessing your Application

When you want to expose a service
externally eg: access via browser using a
URL, you create a “Route”

Route gets added to a HAProxy LB.

You can configure your F5 as well as LB.

