SECURITY AT THE EDGE

Ansible to Automate Security for Edge Computing

Kevin Jones Cloud Domain Architect

What we'll be discussing today

Define Edge

Use Cases

Automation Considerations

Edge at Red Hat

Project Hat Trick Demo

DEFINE EDGE

Edge is focused on "where the workload is located."

Pivot from network centric services to workload centric services.

WHY DO EDGE COMPUTING?

BENEFITS OF EDGE COMPUTING ARCHITECTURE

Reduce Latency Place processing power closer to the data source

Save Bandwidth

Reduce the amount of traffic that needs to travel back to the data center core

Increased Resilience

Continuous business operations in the event of unexpected site blackout

Data Sovereignty Meet standards and compliance requirements

YOU ARE ON EDGE!

8

EDGE IS NOT SPECIFIC TO ANY INDUSTRY

Telecommunications

Manufacturing

Retail

Health-life science

Many others

Public sector

USE CASES

NETWORK FUNCTION VIRTUALIZATION NEXT GENERATION MOBILE NETWORKS

Responsible for:

- Mobile connectivity
- Global Infrastructure
- Addiction to Facebook

Limiting Factors:

- Bandwidth
- Rural locations
- VNF Vendors

- Increase to 1G speeds
- Minimize truck roll
- Maximize privacy and data protection

MILITARY OPERATIONS DATA CENTERS IN VEHICLES AND REMOTE STATIONS

Responsible for:

• Human lives

Limiting Factors:

- Hostile environments
- Limited connectivity
- Small, harsh spaces Sand

- Ruggedized infrastructure
- Application availability for logistics, comms, etc.
- Tight access control (both physical and logical)

ON LOCATION TRAINING BRING THE CLASSROOM TO THE STUDENTS

Responsible for:

- Student experience
- Sufficient lab resources

Limiting Factors:

- Limited connectivity
- Availability of materials
- Instructor transport

- Low power
- Portable infrastructure
- Multi-tenancy

DISASTER RESPONSE AND RECOVERY WE THINK OF DR IN THE DATA CENTER. IMAGINE RESPONDING IN REAL LIFE

Responsible for:

- Response during
- Recovery after

Limiting Factors:

- Cell towers damaged
- Power out or unstable
- Multiple organizations

- Portable infrastructure
- Application availability for logistics, comms, etc.

CYBER SECURITY THE BEST DEFENSE IS A GREAT OFFENSE

Responsible for:

- Network integrity
- Detection and defense
- Data security

Limiting Factors:

- Compromised situation
- Unknown enemy
- External connectivity

- Portable infrastructure
- Run tested tools

AUTOMATION CONSIDERATIONS

DEVICE AND NETWORK SECURITY CONSIDERATIONS FOR EDGE COMPUTING

Me hacking your IoT doorbell !!!

Physical

- Immutable device provisioning
- TPM enabled
- Encrypt local storage

Logical

- Encrypt all network traffic
- Service account access only
- Automatic key rotation

EXAMPLE: CERTIFICATE CREATION AND VALIDATION

- name: Create a challenge for sample.com using a account key from a variable. acme_certificate: account_key_content: "{{ account_private_key }}" csr: /etc/pki/cert/csr/sample.com.csr dest: /etc/httpd/ssl/sample.com.crt register: sample_com_challenge

- copy:

17

dest: /var/www/html/{{ sample_com_challenge['challenge_data']['sample.com']['http-01']['resource'] }}
content: "{{ sample_com_challenge['challenge_data']['sample.com']['http-01']['resource_value'] }}"
when: sample_com_challenge is changed

- name: Let the challenge be validated and retrieve the cert and intermediate certificate acme_certificate:

account_key_src: /etc/pki/cert/private/account.key
csr: /etc/pki/cert/csr/sample.com.csr
dest: /etc/httpd/ssl/sample.com.crt
fullchain_dest: /etc/httpd/ssl/sample.com-fullchain.crt
chain_dest: /etc/httpd/ssl/sample.com-intermediate.crt
data: "{{ sample com challenge }}"

EXAMPLE: ENABLE TPM2 RESOURCE MANAGER

```
- name: Install necessary TPM packages
 become: yes
 yum:
    name: "tpm2-tools,tpm2-abrmd,tpm2-tss"
    state: present
- name: Enabled resource manager service and start now
 become: yes
 serice:
   name: tpm2-abrmd
    state: started
   enabled: true
- name: Take ownership of the TPM
 become: yes
  shell: "tpm2 takeownership -o {{ tpm owner pwd }} -e {{ tpm endorse pwd }} -l {{ tpm lockout pwd }}"
```

Red Hat

#NOTE: Luke Hinds has an ansible role which creates a TPM2 simulator https://github.com/lukehinds/ansible-tpm-simulator

COMPONENTS AND SERVICES CONSIDERATIONS FOR EDGE COMPUTING

Cloud Providers

- <u>Ansible Cloud Modules</u>
- <u>Amazon Web Services</u>
- <u>Google Cloud Platform</u>
- <u>Microsoft Azure</u>

Private Infrastructure

- <u>Containerization</u>
- <u>OpenStack</u>
- <u>Traditional Virt</u>

EXAMPLE: UTILIZING IAM IN AWS

```
tasks:
- name: Create a new IAM user with API keys
 iam:
   iam type: user
    name: kevinjones
    state: present
   password: "{{ temp pass }}"
    access key state: create
- name: Create IAM role with custom trust relationship
 iam:
    iam type: role
    name: AAALambdaTestRole
    state: present
    trust policy:
     Version: '2012-10-17'
      Statement:
      - Action: sts:AssumeRole
        Effect: Allow
        Principal:
           Service: lambda.amazonaws.com
```


Source: https://docs.ansible.com/ansible/latest/modules/iam_module.html

EXAMPLE: MANAGE USER ROLES IN OPENSTACK

Grant an admin role on the user admin in the project project1

- os_user_role: cloud: hattrick user: kevinjones role: admin project: project1

Revoke the admin role from the Chris Reynolds in the raleigh domain

- os_user_role: cloud: hattrick state: absent user: creynolds role: admin domain: raleigh

Source: https://docs.ansible.com/ansible/latest/modules/os_user_role_module.html#os-user-role-module

CONNECTIVITY CONSIDERATIONS FOR EDGE COMPUTING

ANSIBLE RESOURCES FOR NETWORK AUTOMATION

Network Automation with Ansible <u>https://www.ansible.com/integrations/networks</u>

Modules Maintained by the Ansible Network Team

https://docs.ansible.com/ansible/latest/modules/network_maintained.html

EXAMPLE: SIMPLE NETWORK INTERFACE CHANGES

- name: configure interface
 net_interface:
 name: ge-0/0/1
 description: test-interface
- name: remove interface
 net_interface:
 name: ge-0/0/1
 state: absent
- name: make interface up net_interface: name: ge-0/0/1 description: test-interface enabled: True
- name: make interface down
 net_interface:
 name: ge-0/0/1
 description: test-interface
 enabled: False

LOCAL OR CENTRALIZED ANALYTICS CONSIDERATIONS FOR EDGE COMPUTING

Depends on Use Case and Workload

Local

- Source data is larger
- Decision localized
- Time to decision critical

Centralized

- Derived data is larger
- Aggregate decisions

MINIMIZE MAINTENANCE CONSIDERATIONS FOR EDGE COMPUTING

Operators

- People are expensive
- Not repeatable
- They also die

Hardware

- Compact spaces
- Rugged
- Reduce need to visit

EDGE AT RED HAT

MOBILE PORTFOLIO CENTER A TRUCK THAT BRINGS RED HAT SUMMIT TO YOU

Red Hat's edge weighs 85,000 pounds :)

PROJECT HAT TRICK DEVELOPMENT PLATFORM

- RAM: 2 x 16GB
- M.2 SATA: Intel 540S 1TB
- 2.5" SSD 1: Intel S3520 960GB

COMPUTE Nodes: 4

- Motherboard / CPU: Xeon D1541 (10GbE)
- RAM: 128GB (4x 32GB)
- M.2 NVMe SSD: Intel P600 480GB
- 4 x 2.5" SSD 1: Intel S3520 480GB
- TPM Module: Yes

NETWORK

• Netgear XS716T: 16 x 10GBaseT

DEMO: PIMP WORK. RUN COMMAND. BE A ROCKSTAR!

_ _ _

31

HAT TRICK DEPLOY PLAYBOOK

- name: Configure KVM host
import playbook: kvm.yml

- name: Provision, install and configure IDM
import playbook: idm.yml

- name: Provision, install and configure Director import playbook: director.yml

- name: Configure and deploy OpenStack overcloud import_playbook: overcloud.yml

- name: Provision, install and configure Tower
import playbook: tower.yml

- name: Provision, install and configure CloudForms
import_playbook: cloudforms.yml

📥 Red Hat

RESOURCES

Roles - https://galaxy.ansible.com/RedHatGov

Repo - https://github.com/RedHatGov/hattrick

Other

https://www.redhat.com/en/technologies/industries/government https://www.redhat.com/en/blog/channel/vertical-industries-blog https://www.redhat.com/en/technologies/industries/telecommunications https://www.redhat.com/en/mobile-portfolio-center https://www.openstack.org/edge-computing/

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.

