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Integration: Systems of Systems

\ NS NTo }2.&_(




From traditional integration ...
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. to agile integration ...
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... and finally microservices
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Why microservices?

How soon can
we have it?

How much it
costs to run?

Microservices

Monolith

= -

Operational efficiency Fast value delivery

‘ RedHat



Martin Fowler

01 July 2015

Microservices provide benefits...

e Strong Module Boundaries: Microservices
reinforce modular structure, which is particularly
important for larger teams.

¢ Independent Deployment: Simple services are
easier to deploy, and since they are autonomous,
are less likely to cause system failures when they
go wrong.

o Technology Diversity: With microservices you
can mix multiple languages, development
frameworks and data-storage technologies.

Translations: Japanese - Korean

...but come with costs

o Distribution: Distributed systems are harder to
program, since remote calls are slow and are
always at risk of failure.

e Eventual Consistency: Maintaining strong
consistency is extremely difficult for a distributed
system, which means everyone has to manage
eventual consistency.

(= ‘; o 15 . ‘;‘

e Operational Complexity: You need a mature
operations team to manage lots of services,
which are being redeployed regularly.

https://martinfowler.com/articles/microservice-trade-offs.html



Adopting microservices means dealing with the
inherent complexity of distributed systems
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Replying to @nOther_guy @ghohpe @bobby_woolf

So true... great book, it’'s my patterns
“bible”...in 2003 the name was right, we used
these patterns to integrate systems... in 2019
we use them to compose distributed
systems.

4:25 PM - 18 Mar 2019

&9 Gregor
&=HE @ghohpe

Replying to @n0Other_guy @mariusbogoevici and 2 others

Orchestration is an important part of
integration. The #eaipatterns book is really
about async messaging whereas
orchestration is generally stateful. One day,
that be the second volume. Work in progress
here, incl. description of difference here:
enterpriseintegrationpatterns.com/patterns/c
onve...

11:19 PM - 2 Apr 2019



Today’s focus: how microservices run and
communicate

There are other challenges: security, observability, etc.
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Today’s focus: how microservices run and
communicate



Running microservices at
scale
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Containerization

Reduce overhead in running services
Higher density/utilization gains
Portable across deployment platforms
Rich ecosystem (see Kubernetes!)
Shorter-lived

Code
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Microservices in containers:
Increasing agqility, isolation, utilization
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Orchestrating containers on cloud native platforms

e Use aplatform that makes running apps reliable, transparent and
boring

e [n-built resource management
o Memory, CPU, disk

e Elastic scaling

e Monitoring and failover

o Health, logging, metrics OPENSHIFT

e Routing and load balancing
e Rolling upgrades and CI/CD
e Namespacing

& RedHat
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Insight: focus on delegating to the platform all
responsibilities that are not intrinsic to the application



Integrating microservices:
how they communicate
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System-level integration via APIs:
bounded contexts and ubiquitous language

19

© Ve
7a
AT T
S /‘i‘/ l %
PT =
AFT
O\Cf ©§ 9©
- é) -
C Rt . AN 2 NvENToR 5




20

Request-reply vs. event-driven
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Synchronous & ephemeral

Low composability

Simplified model

Low tolerance to failure

Best practices evolved as REST
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Asynchronous and persistent
Decoupled

Highly composable

Complex model

High tolerance to failure

Best practices are still evolving

‘ RedHat



Modern RESTful
integration with Service
Mesh




How simple are RESTful microservices?
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Solution: enhancing applications




Enhancing apps: in-process/out-of-process
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Enhance the application itself
Drawback: model does not
extend outside Spring/Java
Each application needs to be
enhanced individually

envoy

Envoy model

Out-of process binary proxy for
HTTP/HTTP2

Polyglot support, app agnostic
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Pod injection
Polyglot support, app agnostic

& RedHat
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Istio
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Istio: Pilot
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Istio: Mixer
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Istio: Citadel
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Moving complexity into the platform
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Event-driven and
streaming architectures

30



What is an event?

e Action or occurrence, something that happened in the past
o ‘Order created’, ‘user logged in’,°
e Event characteristics:
o Immutable
o Optionally persistent
o Shareable
e Eventtypes:[1]
o Notification
o State Transfer (Command)
o Event-Sourcing/CQRS

[1] https://martinfowler.com/articles/201701-event-driven.html

31



Designing systems with events

oRLER
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EDA: event-centric approach in system design
o Treating events as part of your domain model
o Designing components as event handlers and
emitters
EDA is aligned with the goals of domain-driven design
o Enforce isolation and decoupling between
bounded contexts
o Properly designed events can create an
expressive ubiquitous language
EDA creates highly observable and extensible systems
Event storming: events-first design
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Event-driven microservices
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Events in the digital business

We live in an event-driven world (literally), and that impacts how we do business
Next-generation digital business is about agility and experimentation

O

O
O

Shifting focus from analyzing the status quo to understanding the changein
progress

Blurring the distinction between events and data

Architectural focus shifting from data-centric to event-driven

Increased importance of bottom-up approaches in business event design

O

O

Complex event processing driven by experimentation, analytics, machine
learning

Emphasis on readiness to observe and collect events before ascribing them a
business meaning
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Event-driven architectures reduce friction

e From atechnical standpoint:

o Building robust and resilient distributed architectures
e From adevelopment process standpoint

o High composability encourage agility and experimentation
e From a business standpoint:

o Aligning digital business with the real world
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Evolution of messaging infrastructure:

from traditional brokers ...

e Publish subscribe semantics (vs
gueuing)

e Subscribers receive events at their
own pace

e High utilization of consumers,
regardless of event publish

e Persistent vs non-persistent

e Example: ActiveMQ, RabbitMQ, etc

(bro Ler
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... to streaming

e Decentralized processing

e Move indexing and bookkeeping to consumers

e Make fundamental data structure first class citizen (log data
structure)

e Replication and failover part of the protocol

e Example: Apache Kafka, Kinesis, etc
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Traditional messaging vs streaming

Traditional messaging

e Advantage in:individual message
exchanges (transactionality,
acknowledgment, error
handling/DLQs), P2P/competing
consumer support

e Publish-subscribe support with
limitations)

e Noreplay support

Log/Streaming Systems

Advantage in: long-term persistence,

replay, semantic partitioning, large
publisher/subscriber imbalances,
replay and late-coming subscribers
Weak support for individual message
acknowledgment, p2p/competing
consumers
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Messaging: utility service & event streams
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Agile Integration with
Microservices, Containers
and Events
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From ESBs to agile integration

Anache &~
" Camel
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EnTERPRIST SERCT, BOS
Optimized for utilization Optimized for aqility
Centralized, tightly coupled Decentralized, decoupled
Mixing logic with infrastructure Separate messaging middleware from logic

4
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Modern enterprise integration:
agile, decentralized, cloud-native
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Optimized for aqility Preserves benefits of aqility while optimizing resource
Decentralized, decoupled utilization
Separate messaging middleware from logic Clear separation of concerns between compute and

data infrastructure and application logic
42
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Enterprise integration patterns for microservices

e Originally designed for building integrated solutions out of siloed
enterprise systems

e Applicable to general-purpose event-driven interaction

e \Very well suited for building event-oriented distributed systems
(aka event-driven microservices) - e.g. with Apache Camel
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Enterprise Integration and Streaming

e Perpetual data and event “streams” as a first class citizen

e Datain aggregate vs individual messages

e Small services working together to interpret large numbers of
streams

e Datain perpetual motion

e Eventual consistency as data synchronization pattern

e Examples: Apache Camel, Kafka Streams, stream-processing
frameworks

Apache ) o
Camel

‘ RedHat



Modern enterprise integration:
agile, decentralized, cloud-native
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Thank you

Red Hat is the world’s leading provider of enterprise
open source software solutions. Award-winning
support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

CONFIDENTIAL Designator

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat




