Integration with
microservices,
events & APIs:
What’s next?

Marius Bogoevici
Principal Specialist Solution Architect

Chicago - May 21, 2019

CONFIDENTIAL Designator

Marius Bogoevici

e Principal Specialist Solutions Architect at Red Hat

o Specialize in Integration/Messaging/Data Streaming

e (OSS contributor since 2008
o Spring Integration
o JBoss ecosystem
o Spring XD, Spring Integration Kafka
o Former Spring Cloud Stream project lead

e (Co-author “Spring Integration in Action”, Manning, 2012

Integration: Systems of Systems

\ NS NTo }2.&_(

From traditional integration ...

i ?\i TEAM FINANCE

R AN CE

%%% TEAM [TRERATION

\NMTE G RAT \ond

\/E lN\fE’t\STOQ_L(

R % o con 2 8% Terr

\ N.\l%t_rorz\-(

TSN

f

. to agile integration ...

ENANCE

- — e

.y ;ng‘\ ﬁ/?qg; TEAM

\
oe_bazuACr \
|

BILLin G—

°¢-b%v-aoc,.

,@?\3

/
/

Team
SPPIN 6

... and finally microservices

ORTTRNG

ONLI € SKoPPNG-

BILLING

SHPPIN 6—

M VERSTORY JI

>0

3\ L) G-

O nérs

SHLPNERT

(INVENTOo fLY

Why microservices?

How soon can
we have it?

How much it
costs to run?

Microservices

Monolith

= -

Operational efficiency Fast value delivery

‘ RedHat

Martin Fowler

01 July 2015

Microservices provide benefits...

e Strong Module Boundaries: Microservices
reinforce modular structure, which is particularly
important for larger teams.

¢ Independent Deployment: Simple services are
easier to deploy, and since they are autonomous,
are less likely to cause system failures when they
go wrong.

o Technology Diversity: With microservices you
can mix multiple languages, development
frameworks and data-storage technologies.

Translations: Japanese - Korean

...but come with costs

o Distribution: Distributed systems are harder to
program, since remote calls are slow and are
always at risk of failure.

e Eventual Consistency: Maintaining strong
consistency is extremely difficult for a distributed
system, which means everyone has to manage
eventual consistency.

(= ‘; o 15 . ‘;‘

e Operational Complexity: You need a mature
operations team to manage lots of services,
which are being redeployed regularly.

https://martinfowler.com/articles/microservice-trade-offs.html

Adopting microservices means dealing with the
inherent complexity of distributed systems

10

ENTERPRISE

INTEGRATION

PATTERNS

Grecor Hour
Bossy WooOun

Ay Pauow

Msrs v .
S an Ny

M n

)

ﬁ Gary Olliffe . .
b @garyolliffe

Replying to @nOther_guy @ghohpe @bobby_woolf

So true... great book, it’'s my patterns
“bible”...in 2003 the name was right, we used
these patterns to integrate systems... in 2019
we use them to compose distributed
systems.

4:25 PM - 18 Mar 2019

&9 Gregor
&=HE @ghohpe

Replying to @n0Other_guy @mariusbogoevici and 2 others

Orchestration is an important part of
integration. The #eaipatterns book is really
about async messaging whereas
orchestration is generally stateful. One day,
that be the second volume. Work in progress
here, incl. description of difference here:
enterpriseintegrationpatterns.com/patterns/c
onve...

11:19 PM - 2 Apr 2019

Today’s focus: how microservices run and
communicate

There are other challenges: security, observability, etc.

12

Today’s focus: how microservices run and
communicate

Running microservices at
scale

13

14

Containerization

Reduce overhead in running services
Higher density/utilization gains
Portable across deployment platforms
Rich ecosystem (see Kubernetes!)
Shorter-lived

Code

?rmmewu rs

p— —

AW “CWHOV\

——

—

o —

Contuiner

— sous—tu, — il
O ——— B T

0§

VM

pe—— — == o

l—\q fel viso¥

?h\{{ ical Hardwice

& ﬁ? -

n/y)» N S ' 29 P .
i) ' M ry)

Af% (Crofervice.S

Microservices in containers:
Increasing agqility, isolation, utilization

Ofermhwiy Sustem

(ferrtingy Sistem

(ferhwndy Sustem

Orchestrating containers on cloud native platforms

e Use aplatform that makes running apps reliable, transparent and
boring

e [n-built resource management
o Memory, CPU, disk

e Elastic scaling

e Monitoring and failover

o Health, logging, metrics OPENSHIFT

e Routing and load balancing
e Rolling upgrades and CI/CD
e Namespacing

& RedHat

16

Insight: focus on delegating to the platform all
responsibilities that are not intrinsic to the application

Integrating microservices:
how they communicate

18

System-level integration via APIs:
bounded contexts and ubiquitous language

19

© Ve
7a
AT T
S /‘i‘/ l %
PT =
AFT
O\Cf ©§ 9©
- é) -
C Rt . AN 2 NvENToR 5

20

Request-reply vs. event-driven

REquesT

N

CenenNT STRUNT R

.

R%PL_\/

Synchronous & ephemeral

Low composability

Simplified model

Low tolerance to failure

Best practices evolved as REST

Feovucse. ﬁr-::oN SOMER_
SN

O NS UMITR.

Asynchronous and persistent
Decoupled

Highly composable

Complex model

High tolerance to failure

Best practices are still evolving

‘ RedHat

Modern RESTful
integration with Service
Mesh

How simple are RESTful microservices?

yA
i -
To7-
-7 .7
NEQ MasurGaETNT

Mo NIToR (G-

» — '
TRAC G
C\\QC,Q‘\T /
et AT A
N E

Solution: enhancing applications

Enhancing apps: in-process/out-of-process

24

Apgleskion

Lee Ap

NETFLIX
-] —

| &

Enhance the application itself
Drawback: model does not
extend outside Spring/Java
Each application needs to be
enhanced individually

envoy

Envoy model

Out-of process binary proxy for
HTTP/HTTP2

Polyglot support, app agnostic

—~ — - — o - _l
-

&S

OPENSHIFT

Pod injection
Polyglot support, app agnostic

& RedHat

\

25

Istio

seeN\eE

sEeN\oE

Se&\l'\e.’c‘:

PoT

Mix ER.

CiTADE (L

Con TeoL

Pane

26

Istio: Pilot

SE‘Q\J'\Q,%

Sel\l'\e:'é

7

seeNv\cT

/-C;:!?(@ocz&’\‘\o&

vl

PoT

Mk ER.

CiTADR

Comn TeoL
Pane

27

Istio: Mixer

seeN\cT

p—mmr
/
/
/

seev\cT

i
e
~
- P sl —
;/‘ LT < \ o
— ;

C‘(TAD%L

C—OM TROL
P NE-

28

Istio: Citadel

szeNv\eT seeNv\eT sseNv\eT
LS aX
CRRTE AT
o e e
)
Con TeoL
Eil e MirER, CiTave_ Pane

Moving complexity into the platform

AP

APP

APC

S

OPENSHIFT

| T o

Event-driven and
streaming architectures

30

What is an event?

e Action or occurrence, something that happened in the past
o ‘Order created’, ‘user logged in’,°
e Event characteristics:
o Immutable
o Optionally persistent
o Shareable
e Eventtypes:[1]
o Notification
o State Transfer (Command)
o Event-Sourcing/CQRS

[1] https://martinfowler.com/articles/201701-event-driven.html

31

Designing systems with events

oRLER

32

INy € N‘Voay

pa— -

-~
-~

Bl NG N

V '
\
\

1
x N SHIPMENT (

¥ f
= e e S

EDA: event-centric approach in system design
o Treating events as part of your domain model
o Designing components as event handlers and
emitters
EDA is aligned with the goals of domain-driven design
o Enforce isolation and decoupling between
bounded contexts
o Properly designed events can create an
expressive ubiquitous language
EDA creates highly observable and extensible systems
Event storming: events-first design

33

Event-driven microservices

- NoT(FleaT: onl

N

SRIPEL NYG—

(/

M

'PA-\’ MENTS

Applications
IN\A-’&’-IQTOE_Y
v | |
iome Messaging
eSS Middleware

34

Events in the digital business

We live in an event-driven world (literally), and that impacts how we do business
Next-generation digital business is about agility and experimentation

O

O
O

Shifting focus from analyzing the status quo to understanding the changein
progress

Blurring the distinction between events and data

Architectural focus shifting from data-centric to event-driven

Increased importance of bottom-up approaches in business event design

O

O

Complex event processing driven by experimentation, analytics, machine
learning

Emphasis on readiness to observe and collect events before ascribing them a
business meaning

35

Event-driven architectures reduce friction

e From atechnical standpoint:

o Building robust and resilient distributed architectures
e From adevelopment process standpoint

o High composability encourage agility and experimentation
e From a business standpoint:

o Aligning digital business with the real world

36

Evolution of messaging infrastructure:

from traditional brokers ...

e Publish subscribe semantics (vs
gueuing)

e Subscribers receive events at their
own pace

e High utilization of consumers,
regardless of event publish

e Persistent vs non-persistent

e Example: ActiveMQ, RabbitMQ, etc

(bro Ler

Paink 2 poink pab | Sub

A ,W’Ldl 'Zuﬁﬁn'm’

Indexing

37

... to streaming

e Decentralized processing

e Move indexing and bookkeeping to consumers

e Make fundamental data structure first class citizen (log data
structure)

e Replication and failover part of the protocol

e Example: Apache Kafka, Kinesis, etc

38

Traditional messaging vs streaming

Traditional messaging

e Advantage in:individual message
exchanges (transactionality,
acknowledgment, error
handling/DLQs), P2P/competing
consumer support

e Publish-subscribe support with
limitations)

e Noreplay support

Log/Streaming Systems

Advantage in: long-term persistence,

replay, semantic partitioning, large
publisher/subscriber imbalances,
replay and late-coming subscribers
Weak support for individual message
acknowledgment, p2p/competing
consumers

39

Messaging: utility service & event streams

S0

OPENSHIFT

C-m e i — — = — = = —— — |- NoT(FlaaT: on)
\ N
SRR BLuNG- ShHiPeI NG NN To R

P Lt
\ Ih v |

———

Agile Integration with
Microservices, Containers
and Events

40

From ESBs to agile integration

Anache &~
" Camel
MESSAGING (RoUTinG .
TRANSTOR MA T ovd)V\€§L"t’r‘\ot\\ i . k
A MESTaG1 N &
EnTERPRIST SERCT, BOS
Optimized for utilization Optimized for aqility
Centralized, tightly coupled Decentralized, decoupled
Mixing logic with infrastructure Separate messaging middleware from logic

4

‘ RedHat

Modern enterprise integration:
agile, decentralized, cloud-native

Apache #~
Andche 4~ . — — "<camel STRIMZI
"< camel ? Mesgnaing
{ — — : £S -a- SQKV{Q_Q
=y = C‘enmosse
' |
; rmesstxe-h\; e- _.. = ,
4 | . - l t ,uESN
f TTT—— | evieE
TS ST e DRoEL- OPENSHIFT
Optimized for aqility Preserves benefits of aqility while optimizing resource
Decentralized, decoupled utilization
Separate messaging middleware from logic Clear separation of concerns between compute and

data infrastructure and application logic
42

‘ RedHat

43

Enterprise integration patterns for microservices

e Originally designed for building integrated solutions out of siloed
enterprise systems

e Applicable to general-purpose event-driven interaction

e \Very well suited for building event-oriented distributed systems
(aka event-driven microservices) - e.g. with Apache Camel

44

Enterprise Integration and Streaming

e Perpetual data and event “streams” as a first class citizen

e Datain aggregate vs individual messages

e Small services working together to interpret large numbers of
streams

e Datain perpetual motion

e Eventual consistency as data synchronization pattern

e Examples: Apache Camel, Kafka Streams, stream-processing
frameworks

Apache) o
Camel

‘ RedHat

Modern enterprise integration:
agile, decentralized, cloud-native

o Aéw ™
' = Gamel e ,

APPL—‘CA’T\ON l% S BEING i
! = ‘ &S -a-seevice
N _./L_ € =hmasse
L REPLLCAT\ON
' |
l[hep CATioN || .O(’&N.
: (N 5~ "AN] fax=
e =Nt B e

er—DV\E& OPENSHIFT

Thank you

Red Hat is the world’s leading provider of enterprise
open source software solutions. Award-winning
support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

CONFIDENTIAL Designator

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

