
CONFIDENTIAL Designator

Chicago - May 21, 2019

1

Marius Bogoevici
Principal Specialist Solution Architect

Integration with 
microservices, 
events & APIs:
What’s next?



Marius Bogoevici

● Principal Specialist Solutions Architect at Red Hat
○ Specialize in Integration/Messaging/Data Streaming

● OSS contributor since 2008
○ Spring Integration
○ JBoss ecosystem
○ Spring XD, Spring Integration Kafka
○ Former Spring Cloud Stream project lead

● Co-author “Spring Integration in Action”, Manning, 2012

2



Integration: Systems of Systems

3



From traditional integration … 

4



… to agile integration ...

5



… and finally microservices

6



Why microservices?

Monolith Microservices

Operational efficiency Fast value delivery

7



https://martinfowler.com/articles/microservice-trade-offs.html8



Adopting microservices means dealing with the 
inherent complexity of distributed systems

9



10



Today’s focus: how microservices run and 
communicate 

There are other challenges: security, observability, etc.

11



Today’s focus: how microservices run and 
communicate 

12



Running microservices at 
scale

13



● Reduce overhead in running services
● Higher density/utilization gains
● Portable across deployment platforms
● Rich ecosystem (see Kubernetes!)
● Shorter-lived

Containerization

14



Microservices in containers:
Increasing agility, isolation, utilization

15



● Use a platform that makes running apps reliable, transparent and 
boring

● In-built resource management
○ Memory, CPU, disk

● Elastic scaling
● Monitoring and failover

○ Health, logging, metrics
● Routing and load balancing
● Rolling upgrades and CI/CD
● Namespacing

Orchestrating containers on cloud native platforms

16



Insight: focus on delegating to the platform all 
responsibilities that are not intrinsic to the application 

17



Integrating microservices: 
how they communicate

18



System-level integration via APIs: 
bounded contexts and ubiquitous language

19



Request-reply vs. event-driven 

Synchronous & ephemeral
Low composability
Simplified model
Low tolerance to failure 
Best practices evolved as REST

Asynchronous and persistent 
Decoupled
Highly composable
Complex model
High tolerance to failure
Best practices are still evolving 

20



Modern RESTful 
integration with Service 
Mesh

21



How simple are RESTful microservices?

 

22



Solution: enhancing applications 

 

23



Enhancing apps: in-process/out-of-process

Enhance the application itself 
Drawback: model does not 
extend outside Spring/Java
Each application needs to be 
enhanced individually

 

Envoy model
Out-of process binary proxy for 
HTTP/HTTP2
Polyglot support, app agnostic

Pod injection 
Polyglot support, app agnostic

24



Istio

25



Istio: Pilot

26



Istio: Mixer

27



Istio: Citadel

28



Moving complexity into the platform

29



Event-driven and 
streaming architectures

30



What is an event?

● Action or occurrence, something that happened in the past
○ ‘Order created’, ‘user logged in’, ‘

● Event characteristics:
○ Immutable
○ Optionally persistent
○ Shareable 

● Event types: [1]
○ Notification
○ State Transfer (Command)
○ Event-Sourcing/CQRS

[1] https://martinfowler.com/articles/201701-event-driven.html
31



Designing systems with events
● EDA: event-centric approach in system design

○ Treating events as part of your domain model
○ Designing components as event handlers and 

emitters
● EDA is aligned with the goals of domain-driven design

○ Enforce isolation and decoupling between 
bounded contexts

○ Properly designed events can create an 
expressive ubiquitous language

● EDA creates highly observable and extensible systems
● Event storming: events-first design

32



Event-driven microservices 

Applications

Messaging
Middleware

33



Events in the digital business
● We live in an event-driven world (literally), and that impacts how we do business
● Next-generation digital business is about agility and experimentation

○ Shifting focus from analyzing the status quo to understanding the change in 
progress

○ Blurring the distinction between events and data
○ Architectural focus shifting from data-centric to event-driven

● Increased importance of bottom-up approaches in business event design
○ Complex event processing driven by experimentation, analytics, machine 

learning
○ Emphasis on readiness to observe and collect events before ascribing them a 

business meaning

34



Event-driven architectures reduce friction 

● From a technical standpoint:
○ Building robust and resilient distributed architectures

● From a development process standpoint
○ High composability encourage agility and experimentation

● From a business standpoint:
○ Aligning digital business with the real world

35



Evolution of messaging infrastructure: 
from traditional brokers … 

● Publish subscribe semantics (vs 
queuing)

● Subscribers receive events at their 
own pace

● High utilization of consumers, 
regardless of event publish

● Persistent vs non-persistent
● Example: ActiveMQ, RabbitMQ, etc

36



… to streaming 

● Decentralized processing
● Move indexing and bookkeeping to consumers
● Make fundamental data structure first class citizen (log data 

structure)
● Replication and failover part of the protocol
● Example: Apache Kafka, Kinesis, etc

37



Traditional messaging Log/Streaming Systems

● Advantage in: individual message 
exchanges (transactionality, 
acknowledgment, error 
handling/DLQs), P2P/competing 
consumer support

● Publish-subscribe support with 
limitations)

● No replay support

● Advantage in: long-term persistence, 
replay, semantic partitioning, large 
publisher/subscriber imbalances, 
replay and late-coming subscribers

● Weak support for individual message 
acknowledgment, p2p/competing 
consumers

Traditional messaging vs streaming 

38



Messaging: utility service & event streams 

39



Agile Integration with 
Microservices, Containers 
and Events

40



From ESBs to agile integration

Optimized for utilization
Centralized, tightly coupled
Mixing logic with infrastructure

Optimized for agility
Decentralized, decoupled
Separate messaging middleware from logic

41



Modern enterprise integration: 
agile, decentralized, cloud-native

Optimized for agility
Decentralized, decoupled
Separate messaging middleware from logic

Preserves benefits of agility while optimizing resource 
utilization
Clear separation of concerns between compute and 
data infrastructure and application logic

42



Enterprise integration patterns for microservices

● Originally designed for building integrated solutions out of siloed 
enterprise systems

● Applicable to general-purpose event-driven interaction
● Very well suited for building event-oriented distributed systems 

(aka event-driven microservices) - e.g. with Apache Camel

43



Enterprise Integration and Streaming

● Perpetual data and event “streams” as a first class citizen
● Data in aggregate vs individual messages
● Small services working together to interpret large numbers of 

streams
● Data in perpetual motion
● Eventual consistency as data synchronization pattern
● Examples: Apache Camel, Kafka Streams, stream-processing 

frameworks

44



Modern enterprise integration: 
agile, decentralized, cloud-native

45



CONFIDENTIAL Designator

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise 

open source software solutions. Award-winning 

support, training, and consulting services make 

Red Hat a trusted adviser to the Fortune 500. 

Thank you

46


