
Microservices Day NYC, August 2019

Marius Bogoevici
Principal Specialist Solution Architect
mariusb@redhat.com
twitter: mariusbogoevici

1

Event-driven 
Microservices in the 
Serverless Age

mailto:mariusb@redhat.com


Marius Bogoevici

● Principal Specialist Solutions Architect at Red Hat
○ Specialize in Integration/Messaging/Data Streaming

● OSS contributor since 2008
○ Spring Integration
○ JBoss ecosystem
○ Spring XD, Spring Integration Kafka
○ Former Spring Cloud Stream project lead

● Co-author “Spring Integration in Action”, Manning, 2012

2



WHY MICROSERVICES? 
WHY SERVERLESS?

Monolith Microservices

Operational efficiency Fast value delivery



INSERT DESIGNATOR, IF NEEDED4

Still, why fast value delivery?

Fast value delivery

New features

Experimentation

Increased 
confidence



Unfortunately, we cannot predict the future. As an 
organization, we must be able to observe and experiment 
in our environments and react accordingly. 

We need to be agile.



On the other hand we must be mindful of our resources; 

We want to eliminate waste, reduce time to 
experiment, and make it cheap so we can increase 

our returns.



We cannot build complex systems from complex parts. 

We must keep our components as simple and 
understandable as possible. 



As hardware evolves, we have more options



Request-reply vs. event-driven 

Synchronous & ephemeral
Low composability
Simplified model
Low tolerance to failure 
Best practices evolved as REST

Asynchronous and persistent 
Decoupled
Highly composable
Complex model
High tolerance to failure
Best practices are still evolving 

9



What is an event?

● Action or occurrence, something that happened in the past
○ ‘Order created’, ‘user logged in’, ‘

● Event characteristics:
○ Immutable
○ Optionally persistent
○ Shareable 

● Event types: [1]
○ Notification
○ State Transfer (Command)
○ Event-Sourcing/CQRS

[1] https://martinfowler.com/articles/201701-event-driven.html
10



Designing systems with events
● EDA: event-centric approach in system design

○ Treating events as part of your domain model
○ Designing components as event handlers and 

emitters
● EDA is aligned with the goals of domain-driven design

○ Enforce isolation and decoupling between bounded 
contexts

○ Properly designed events can create an expressive 
ubiquitous language

● EDA creates highly observable and extensible systems
● Event storming: events-first design

11



Event-driven microservices 

Applications

Messaging
Middleware

12



RETHINKING EVENT-DRIVEN ARCHITECTURE

EventsMicroservices Lines of 
Business

Apps

Regions

System and data-centric

Events are designed to respond to 
ad-hoc connectivity needs

Event-centric

Events are first class citizens that describe 
the interactions in the enterprise

Events

Events

Events
Microservices

Apps
LOBs

Regions



Microservices in containers:
Increasing agility, isolation, utilization

14



● Use a platform that makes running apps reliable, transparent and 
boring

● In-built resource management
○ Memory, CPU, disk

● Elastic scaling
● Monitoring and failover

○ Health, logging, metrics
● Routing and load balancing
● Rolling upgrades and CI/CD
● Namespacing

Orchestrating containers on cloud native platforms

15



Event-driven microservices in the cloud native age:
Elastic computing and utility messaging

16



Some challenges with microservices ...

● Utilization
○ Idling under low traffic
○ High resource consumption - memory, disk

● Connectivity 
○ Must know broker location
○ Integration with event sources

● Abstraction 
○ Must know broker type
○ Dependence on data/payload formats

● Observability
● Security



Serverless model: event-based and elastic



Enriching microservice architecture with serverless 
facilities

● Elastic execution and avoidance of idling (autoscale)
● Utility data and messaging infrastructure

○ Provided via platform services
● Decoupling of business logic from messaging 

infrastructure



Architectural risks with serverless:
 loss of domain perspective … 



Architectural risks with serverless: 
… point-to-point integrations and sprawl



Recap: event hubs in microservice arhitecture



Event-centric microservice arhitectures...



… can be easily adopted for serverless design



Microservices in Event-driven Architecture:
Pros and cons



Functions in Event-driven Architecture:
Pros and cons



Event-driven microservice use cases applied to serverless
Event Sourcing/CQRS



Event-driven microservice use cases applied to serverless
Streaming ETL, CDC



Event-driven microservice use cases applied to serverless
Load Balancing and High Scale Compute



Container-centric microservices and functions on 
Kubernetes



Optimizing utilization outside of autoscaling

● Impedance mismatch between runtimes optimized for physical/virtual 
environments and containerization
○ Large footprint (low density)
○ Long startup times - latency

● Recommendations:
○ Favor technologies with small footprint and low latency, in particular for 

serverless
○ Favor technologies that allow for easy change of deployment model 

(independent deployment vs on-demand/serverless) while preserving 
investment in business logic



Your technology radar
● Service Mesh (e.g. Istio):

○ Provide microservice interconnectivity
● Serverless platforms (e.g. Knative)

○ Container build and on-demand scheduling
● Container-native frameworks (e.g. Quarkus)

○ Optimize Java workloads for containerized apps
● Strimzi - Kafka operator for Kubernetes/OpenShift
● EnMasse - Messaging-as-a-Service for Kubernetes/OpenShift
● FaaS frameworks (e.g. Camel-K)

○ Schedule integration code directly on platform or via Knative



Conclusions

● Event-driven microservices are key for implementing highly 
distributed, extensible architectures

● Serverless platforms are a natural fit for several event-driven 
microservice use cases

● Serverless architectures should complement event-based execution 
with event-centric design 

● Always consider tradeoffs:
○ Serverless vs independent deployment (aka ‘traditional’ 

microservice)
○ Optimizied runtime vs technical investment (can you have both?)


