

CONFIDENTIAL Designator

2

January 2020

The Business Value
of Quarkus

MW Product Marketing Team

KUBERNETES-NATIVE JAVA

James Falkner / Red Hat / @schtool

[source]

https://books.google.com/books?id=mNeVzGVk_s4C&pg=PA66&lpg=PA66&dq=java+is+dead+computerworld&source=bl&ots=7Mf8Y-gq-C&sig=ACfU3U25FRyYqZk1-42o48Z4dxAKCFG0KQ&hl=en&sa=X&ved=2ahUKEwipr_aM89TgAhWINd8KHezLAwsQ6AEwB3oECAIQAQ#v=onepage&q&f=false

1999

1999

USA Wins FIFA World Cup

si.com/soccer/video/2016/03/02
1999

https://www.si.com/soccer/video/2016/03/02

1999

1999
Nunavut

1999
Julie Payette
First Canadian
aboard the ISS

 $18,000 Sun Sparc App Server Box (4 CPUs, 2GB of RAM)
+ $60,000 BEA Weblogic
+ $92,000 Sun Sparc DB Server Box (8 CPUs)
+ $243,000 Oracle RDBMS
+ $50,000 Symantec Visual Café for 10 developers
--
 $463,000 (capex) + ~$80,000 annual maint (opex)

Cost of a Java-based Web App circa 1999

1999 Enterprise Java Stack

Operating System + Hardware/VM

Java Virtual Machine (Hotspot)

Application Server

App App App App App

Dynamic Application Frameworks

Architecture: Monoliths

Deployment: multi-app,
 appserver

App Lifecycle: Months

Memory: 1GB+ RAM

Startup Time: 10s of sec

2000
RED HAT

LINUX

2007
KVM

2009
DEVOPS

Approx. $140/month

“Cloud Native” Java Stack

Java Virtual Machine (Hotspot)

Application Server

App

Dynamic Application Frameworks

Architecture: Microservices

Deployment: Single App,
 Container

App Lifecycle: Days

Memory: 100MBs+ RAM

Startup Time: Seconds

No Change

?

Container platform

Compute Node

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

Compute Node

Go Go

Go Go

Go Go

Go Go

Go Go

Go Go

Go Go

Compute Node

HotSpot Heap

HotSpot Heap

HotSpot Heap

HotSpot Heap

The “hidden” truth about Java + containers

Java Virtual Machine (Hotspot)

Application Server

App

Dynamic Application Frameworks

Architecture: FaaS

Deployment: Functions

Lifecycle: Seconds

Memory: MBs of Ram

Startup Time: Milliseconds

Cloud Native Java Stack & FaaS

https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/

Languages used on AWS Lambda

https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/

Supersonic. Subatomic. Java.

Quarkus powers Red Hat and third-party commercial apps

Hybrid Cloud
(Kubernetes-native,

hybrid-cloud application
development)

Cloud Efficiency
(low memory, fast startup:

supersonic, subatomic;
efficient, cost effective)

Developer Joy
(live coding, IDE

extensions, familiar APIs,
reuse Java skills)

Quarkus powers the next-generation Java stack for
hybrid-cloud applications

Supersonic, Subatomic Java

Quarkus - Optimizing the Stack

App (Imperative / Reactive)

Optimized Application Frameworks

Architecture: Microservices,
 Serverless

Deployment: Single App

App Lifecycle: Milliseconds
 to Days

Memory: 10MBs+ RAM

Startup Time: Milliseconds

Java Virtual Machine (Hotspot)

Optional

Moving to Compile-Time Boot

What does a framework do at startup time?

● Parse config files
● Classpath & classes scanning

○ for annotations, getters or other
metadata

● Build framework metamodel objects
● Prepare reflection and build proxies
● Start and open IO, threads etc

● Move as much as possible to build
phase

● Minimize runtime dependencies
● Maximize dead code elimination
● Introduce clear metadata contracts
● Spectrum of optimization levels

(all → some → no runtime
reflection)

Quarkus Optimizations

GraalVM

JVM CI

Sulong (LLVM)

Truffle

Graal Compiler

Substrate VM

Java HotSpot VM

Best of Breed Frameworks & Standards

Eclipse Vert.x Hibernate RESTEasy Apache Camel Eclipse MicroProfile Netty

Kubernetes OpenShift Jaeger Prometheus Apache Kafka Infinispan

Flyway Neo4j MongoDB MQTT KeyCloak Apache Tika

Memory Utilization

Quarkus + GraalVM
13 MB

Quarkus + OpenJDK
74 MB

Traditional Cloud-Native Stack
140 MB

REST

Memory Utilization

REST + CRUD

Quarkus +
GraalVM
35 MB

Quarkus + OpenJDK
130 MB

Traditional
Cloud-Native Stack

218 MB

Quarkus Improves Startup Time

Quarkus + GraalVM 0.014 Seconds

REST

REST + CRUD

Quarkus + OpenJDK 0.75 Seconds

Quarkus + GraalVM 0.055 Seconds

Quarkus + OpenJDK 2.5 Seconds

Traditional Cloud-Native Stack 9.5 Seconds

Traditional Cloud-Native Stack 4.3 Seconds

Deployment density - OCP cluster on AWS

Quarkus JVM ~ 30% less than Traditional

Quarkus native ~ 1/8 RAM of Traditional

Traditional stack

Traditional

Source: Study to be published April 2020

Deployment density - OCP cluster on AWS

Quarkus JVM ~ 50% more than Traditional

Quarkus native ~ 800% more than Traditional

higher is better

Traditional stack

Traditional

Source: Study to be published April 2020

TPS under load - containers on bare metal

Quarkus JVM ~ 70% higher than Traditional

Quarkus native ~ 10% lower than Traditional, BUT at
what cost?

Traditional stack

Traditional

Source: Study to be published April 2020

Mem under load - containers on bare metal

Quarkus JVM ~ 20% less than Traditional

Quarkus native ~ 1/3 RAM of Traditional

higher is better}
You get higher TPS for each
consumed MB of RAM

Traditional stack

Traditional stack

Source: Study to be published April 2020

Serverless - OCP Knative on AWS

Quarkus JVM ~ 2x faster than Traditional

Quarkus native ~ 4.5x faster than Traditional (comparable to Golang)

Traditional stack

Source: Study to be published April 2020

Cost savings - containers on OCP on AWS

Quarkus JVM would need 37% less memory than Traditional

Quarkus native would need 71% less memory than Traditional

Traditional stack

Assumption: A customer has about 300 services deployed and 40% (120 pods) are in the category of high, 40% (120 pods) are in
the category of medium, and 20% (60 pods) are in the category of low.

Source: Study to be published April 2020

DEMO

Quarkus in production
Read more at quarkus.io

38

COMING SOON

COMING SOON

COMING SOON

COMING SOON

https://quarkus.io/blog/vodafone-greece-replaces-spring-boot/
https://quarkus.io/blog/talkdesk-chooses-quarkus-for-fast-innovation/

Try it yourself
bit.ly/try-quarkus

Hybrid Cloud
(Kubernetes-native,

hybrid-cloud application
development)

Cloud Efficiency
(low memory, fast startup:

supersonic, subatomic;
efficient, cost effective)

Developer Joy
(live coding, IDE

extensions, familiar APIs,
reuse Java skills)

Quarkus powers the next-generation Java stack for
hybrid-cloud applications

Supersonic, Subatomic Java

