Vancouver

7

Red Hat Day Events

January 30

&

Sl R e T
el S L Cer s L o Py,
l“¢ F PN o e S
W, Jeoer % ‘

¢

R e
James Falkner / Red Hat / @schtool

“The reports of my
death are greatly
exaggerated.”

W e D
[P THE BACK PAGE

FRANK HAYES « FRANKLY SPEAKING

Not Dead Yet

S JAVA DEAD? Come on, seriously — why else would Sun Micro-
systems be offering it up to the open-source crowd? (See story,
page 1.) A decade ago, Java was the hottest, most exciting thing
in IT, a certified Windows-killer that was going to wipe out
Microsoft’s monopoly and revolutionize the way software was
made, distributed and run.| Today? Today, Java is old hat.|It’s been
eclipsed by open-source, the new hottest thing in I'T that’s going to
wipe out Microsoft’s monopoly and revolutionize the way software is

made, distributed and run.

Actually, based on the hype, this sounds like a
perfect match.

within Java? That suddenly becomes possible
once Java goes open-source. Then Java can be [S ourc e]

https://books.google.com/books?id=mNeVzGVk_s4C&pg=PA66&lpg=PA66&dq=java+is+dead+computerworld&source=bl&ots=7Mf8Y-gq-C&sig=ACfU3U25FRyYqZk1-42o48Z4dxAKCFG0KQ&hl=en&sa=X&ved=2ahUKEwipr_aM89TgAhWINd8KHezLAwsQ6AEwB3oECAIQAQ#v=onepage&q&f=false

1999

1999
USA Wins FIFA World Cup

USP
il

, §_i;g‘om/s'occer/video/201 6/03/02

https://www.si.com/soccer/video/2016/03/02

Julie Payette ‘ '

First Canadian

aboard the ISS :
o’

*

Cost of a Java-based Web App circa 1999

$18,000 Sun Sparc App Server Box (4 CPUs, 2GB of RAM)
$60,000 BEA Weblogic
$92,000 Sun Sparc DB Server Box (8 CPUs)
$243,000 Oracle RDBMS
$50,000 Symantec Visual Café for 10 developers

$463,000 (capex) + ~$80,000 annual maint (opex)

1999 Enterprise Java Stack

Architecture: Monoliths | App App App App App

Deployment: multi-app,

Dynamic Application Frameworks

appserver
App Lifecycle: Months
Startup Time: 10s of sec

HITP 11

1996
JAVA10

1995

1997

(¥ |

NETFLIX

O =

2010
NETFLIX
el —)‘. T = w"
2000 2001 O
REDHAT AGILE 2006 2009 6/2011
LINUX MANIFESTO AWSEC2 JAVAEEG VERTX

. |
d = 2009 A
2000 2007 DEVOPS 5/201
FREE BoD KvM DROPWIZARD

X

3/2012
HYSTRIX

NETFLIX
RIBBON

3/2012
RIBBON

&

3/2012
MICROSERVICES

ASSESS,
THOUGHTWORKS

RADAR r

NETFLIX
EUREKA

112012
EUREKA

2015

6/2014
KUBERNETES

=4

3/2013
DOCKER

|
o &
9/2013

SPRING 3/2014
BOOT \ICROSERVICES
DEFINED,
THOUGHTWORKS,
FOWLER, LEWIS

mb5ad.4xlarge
mb5ad.12xlarge
mb5ad.24xlarge
mb5d.large
mb5d.xlarge

mb5d.2xlarge

MEMORY

1GB

2GB

3GB

2GB

1GB

4GB

8GB

16 GB

VCPUS

1vCPU

1vCPU

1vCPU

2vCPUs

3vCPUs

2vCPUs

4 vCPUs

6 vCPUs

16

48

96

8

N/A

N/A

N/A
8
16

31

SSD DISK

25GB

50 GB

60 GB

60 GB

60 GB

80GB

160 GB

320GB

TRANSFER

1B

2TB

3TB

3TB

3TB

4TB

5TB

6TB

64 GiB

192 GiB

384 GiB

8 GiB

16 GiB

32 GiB

PRICE

$5/mo
$0.007/hr

$10/mo
$0.015/hr

$15/mo
$0.022/hr

$15/mo
$0.022/hr

$15/mo
$0.022/hr

$20/mo
$0.030/hr

$40/mo
$0.060/hr

$80/mo
$0.119/hr

2 x 300 NVMe SSD
2 x 900 NVMe SSD
4 x 900 NVMe SSD
1x75 NVMe SSD
1 x 150 NVMe SSD

1 x 300 NVMe SSD

INSTANCE

D2 v3

D4 v3

D8 v3

$0.824 per Hour
$2.472 per Hour
$4.944 per Hour
$0.113 per Hour
$0.226 per Hour

$0.452 per Hour

RAM

8 GiB

16 GiB

32 GiB

/

dWS

\/‘7

TEMPORARY PAY AS YOU GO

STORAGE

50 GiB $0.096/hour

100 GiB g==3»| $0.192/hour

200 GiB $0.384/hour
Approx. $140/month

“Cloud Native” Java Stack

Architecture: Microservices

Deployment: Single App,
Container

App Lifecycle: Days
Memory: 100MBs+ RAM

Startup Time: Seconds

docker & \

No Change

Hey, is it getting a
little tight in here?

If you don't see a command prompt,
bash-4.2$ free ~h
total used
14G 801M
OB 0B

[root@myopenshift ~]# kubectl run mycentos --image=centos =i’ =-limits='memory=512Mi'
aiting for pod myproject/mycentos-
aiting for pod myproject/mycentos-

1280038668~-gv5ag to be run: in~ etatune ie Dandin~a »rd ready:
1280038668-gv5ag to be running, status is Pending, pod ready:
try pressing enter.

free shared buff/cache available
11G 8.9M 2.3G 13G

AV

The “hidden” truth about Java + containers

Node|S Go €le)
NodeJS Go €le
HotSpot Heap NodeJS €le €le

NodeJS Go Go
HotSpot Heap NodeJS €le) Go

HotSpot Heap

NodeJS Go Go
HotSpot Heap NodelS Go Go

Compute Node Compute Node Compute Node

Container platform

Cloud Native

Architecture: FaaS
Deployment: Functions
Lifecycle: Seconds
Memory: MBs of Ram

Startup Time: Milliseconds

Languages used on AWS Lambda

62.9%

® 20.8%

6.1%

3.8%

https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage/

#] QUARKUS

Supersonic. Subatomic. Java.

Supersonic, Subatomic Java

Quarkus powers the next-generation Java stack for
hybrid-cloud applications

Cloud Efficiency Developer Joy Hybrid Cloud

(low memory, fast startup: (live coding, IDE (Kubernetes-native,
supersonic, subatomic; extensions, familiar APlIs, hybrid-cloud application
efficient, cost effective) reuse Java skills) development)

Quarkus powers Red Hat and third-party commercial apps

Quarkus - Optimizing the Stack

Architecture: Microservices,
Serverless App (Imperative / Reactive)

Deployment: Single App

Optimized Application Frameworks

App Lifecycle: Milliseconds
to Days

Memory: 10MBs+ RAM .! ‘
Startup Time: Milliseconds el

Optional

Moving to Compile-Time Boot

What does a framework do at startup time? Quarkus Optimizations
e Parse config files e Move as much as possible to build
e Classpath & classes scanning phase
o for annotations, getters or other e Minimize runtime dependencies
metadata e Maximize dead code elimination
e Build framework metamodel objects e Introduce clear metadata contracts
e Prepare reflection and build proxies e Spectrum of optimization levels
e Startand open IO, threads etc (all - some — no runtime

reflection)

GraalVM

JavaScript

C

Sulong (LLVM)

|

Truffle
Graal Compiler

Substrate VM

Java HotSpot VM

Best of Breed Frameworks & Standards

VERTX

Eclipse Vert.x Hibernate RESTEasy Apache Camel Eclipse MicroProfile
Kubernetes OpenShift Prometheus Apache Kafka Infinispan
&0, . SMQTE
A
Flywayw ‘ a [] c
ny@boxfuse”
mongo

Flyway Neo4j MongoDB MQTT KeyCloak Apache Tika

Quarkus + GraalVM
13 MB

Memory Utilization

REST

Quarkus + Open)DK
74 MB

Traditional Cloud-Native Stack
140 MB

Memory Utilization
REST + CRUD

[] [] [] [||
IR EER IEEEEEEEEEEENEEEEEEEER
Quarkus + Quarkus + Open]DK Traditional

GraalvVM 130 MB Cloud-Native Stack

35 B 218 MB

Quarkus Improves Startup Time
REST

| Quarkus + GraalVM 0.014 Seconds
- Quarkus + Open]DK 0.75 Seconds

_ Traditional Cloud-Native Stack 4.3 Seconds

REST + CRUD

I Quarkus + GraalVM 0.055 Seconds

B ourus + Operiox 2.5 Seconds
Traditional Cloud-Native Stack 9.5 Seconds

Deployment density - OCP cluster on AWS

Memory utilization after starting 10 pods
Application stack Memory utilization

Traditional stack

Quarkus on JVM

Quarkus on Native

Memory usage for 10 instances Quarkus JVM ~ 30% less than Traditional

2000 MB
R Quarkus native ~1/8 RAM of Traditional

1000 MB

500 MB

0 MB
- Traditionak Quarkus on JVM Quarkus on Native

Deployment density - OCP cluster on AWS

Number of pods that can be started with 2GB
Application stack Number of pods Memory utilization

Traditional stack 1911 MB
Quarkus on JVM 1996 MB

Quarkus on Native 1967 MB

Quarkus JVM ~ 50% more than Traditional

Number of pods that can be started in 2 GB of memory
100

75

Quarkus native ~ 800% more than Traditional

Number of pods
8

. higher is better

Traditional Quarkus on JVM Quarkus on Native

Application stack

TPS under load - containers on bare metal

Throughput vs number of concurrent users (TPS_PEAK value marked with bold)

Concurrent connections Traditional stack Quarkus JVM

1375 req/sec

1635 reqg/sec

Quarkus native

1068 req/sec

2597 reg/sec

3033 reg/sec

1932 reqg/sec

3568 reg/sec

4368 req/sec

2693 req/sec

3557 reg/sec

5380 reg/sec

3139 reg/sec

3697 reg/sec 6396 reg/sec 3266 reg/sec
3555 reg/sec 6389 reg/sec 3212 reg/sec
3578 reg/sec 5986 reg/sec 3106 req/sec

Spring Boot, Quarkus JVM and Quarkus native
= Traditional= Quarkus JvM
10000 reg/sec

7500 req/sec

5000 reg/sec

Quarkus native

Quarkus JVM ~ 70% higher than Traditional

Quarkus native ~10% lower than Traditional, BUT at
what cost?

2500 req/sec

0 reg/sec
10 20 30

40

Concurrent connections

50

Mem under load - containers on bare metal

Memory usage for peak load (MEM_PEAK)

Quarkus JVM ~ 20% less than Traditional

Application stack Memory utilization Peak throughput
3697 req/sec

Traditional stack
Quarkus JVM 6396 req/sec

Quarkus Native 3266 req/sec

Quarkus native ~ 1/3 RAM of Traditional

Result as Req/sec/MB

Application stack Req/Sec/MB Comparison
Traditional stack 14 req/sec/MB

Quarkus JVM 30 req/sec/MB 13% . .
_ higher is better
Quarkus Native 41req/sec/MB 193%

You get higher TPS for each
consumed MB of RAM

Serverless - OCP Knative on AWS

Result: Time to First Response (seconds)
Runtime Actual result Compared with ref value

0.000s (REF VALUE)

Go (for reference) 11.432s,9.5345,9.507s MED: 9.534

Traditional stack 40.557s,41.770s,41.941s MED: 41.770 32.236s

Quarkus JVM 15.320,20.281,19.871 MED: 19.871s 10.337s

Quarkus Native 9.237,9.076,9.585 MED: 9.585s 0.051s

Quarkus JVM ~ 2x faster than Traditional

Quarkus native ~ 4.5x faster than Traditional (comparable to Golang)

Cost savings - containers on OCP on AWS

App Stack Estimated Saving

Traditional stack 0%
Quarkus JVM 37%
Quarkus Native 71%

Quarkus JVM would need 37% less memory than Traditional

Quarkus native would need 71% less memory than Traditional

Assumption: A customer has about 300 services deployed and 40% (120 pods) are in the category of high, 40% (120 pods) are in
the category of medium, and 20% (60 pods) are in the category of low.

DEMO

Quarkus in production

Read more at quarkus.io

FLOJ e ons talkde$k®
' ((u))

*

vodafone

38

https://quarkus.io/blog/vodafone-greece-replaces-spring-boot/
https://quarkus.io/blog/talkdesk-chooses-quarkus-for-fast-innovation/

DEVELOPER

FEB 12-16, 2020
SF BAY AREA

DEVELOPER
2805210

DEVIES

A W ARD
BEST INNOVATION IN

API Infrastructui

230820

DEVIE

A WARD

BEST INNOVATION IN
Artificial Intelliger
& Machine Learnii

SiteZeus

FOR

SiteZeus

DEVELOPER
280821 0

DEVIES

A WARDS
BEST INNOVATION IN

Cloud Tools

Chef Software
FOR
Chef EAS

About Conference Expo Speakers Sponsors

Winners How it Works Timeline Categories Judges

DEVELOPER
2808280

DEVIES

DEVELOPER - SF BAY AREA
2RO 20

DEVIES

A W A R D S
BEST INNOVATION IN
Code Frameworks/Libraries

FEB 12-16, 2020
= SF BAY AREA

Red Hat

FOR

Quarkus

Y s W A Y
A WARDS

BEST INNOVATION IN
Code Frameworks/Libraries
Red Hat

FOR
Quarkus

Past Winners

Hackathon Hiring

DEVELOPER
2020

DEVIES

Testing

FEB 12-16, 2020
- SF BAY AREA

B 12-16, 2020
BAY AREA

S

81216, 2020
F BAY AREA

DEVIES

A WARDS
BEST INNOVATION IN
Coding Tools

Gitlab

FOR

GitLab

Media

Getting Started with
Quarkus

Supersonic, Subatomic Java with Quarkus

START SCENARIO

Monitoring Quarkus with
Prometheus and Grafana

Visualizing Quarkus application metrics with
open source monitoring tools

START SCENARIO

Try it yourself

Reactive Streaming with
Quarkus and Kaftka

How Quarkus uses MicroProfile Reactive
Messaging to interact with Apache Kafka

START SCENARIO

Reactive programming
with Quarkus Reactive
SQL

Reactive programming with Quarkus and the

START SCENARIO

bit.ly/try-quarkus

Quarkus for Spring Boot
Developers

Use familiar Spring APIs and annotations to
build a Quarkus app

START SCENARIO

Effective Data with
Hibernate and Panache

Making entities trivial and fun to write in
Quarkus

START SCENARIO

Supersonic, Subatomic Java

Quarkus powers the next-generation Java stack for
hybrid-cloud applications

Cloud Efficiency Developer Joy Hybrid Cloud

(low memory, fast startup: (live coding, IDE (Kubernetes-native,
supersonic, subatomic; extensions, familiar APlIs, hybrid-cloud application
efficient, cost effective) reuse Java skills) development)

Vancouver

7

Red Hat Day Events

January 30

&

