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● Patterns
● Kubernetes
● Categories:
⎈ Foundational Patterns
⎈ Structural Patterns
⎈ Configurational Patterns
⎈ Advanced Patterns
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Q: Why was the developer unhappy at their job?

A: They wanted arrays

Q: Why was the function sad after a successful first call?

A: It didn’t get a callback
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Design Patterns
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A Design Pattern describes a 
repeatable solution to a software 
engineering problem.
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Design Patterns, Elements of Reusable Object-Oriented Software, E. Gamma et. al., 1994, p. 12
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Kubernetes Patterns

10 https://k8spatterns.io
https://www.redhat.com/cms/managed-files/cm-oreilly-kubernetes-patterns-ebook-f19824-201910-en.pdf

https://k8spatterns.io
https://www.redhat.com/cms/managed-files/cm-oreilly-kubernetes-patterns-ebook-f19824-201910-en.pdf
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● Problem
● Patterns:
⎈ Name
⎈ Solution

https://www.martinfowler.com/articles/writingPatterns.html

https://www.martinfowler.com/articles/writingPatterns.html
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● Open Source container orchestration system 
started by Google in 2014
⎈ Scheduling 
⎈ Self-healing 
⎈ Horizontal and vertical scaling 
⎈ Service discovery
⎈ Automated Rollout and Rollbacks

● Declarative resource-centric REST API



Kubernetes Architecture

Kubernetes
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Container Runtime

Kubernetes
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● Container runtime: Kubernetes runs containers through 
an interface called the CRI based on gRPC.
⎈ Any container runtime that implements CRI can be used 

on a node controlled by the kubelet



FOUNDATIONAL 
PATTERNS
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Automatable Unit

Kubernetes
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● Pods: Atomic unit of containers
● Services: Entry point to pods
● Grouping via Labels, Annotations and 

Namespaces

How can we create and manage applications with 
Kubernetes.
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● Kubernetes Atom
● One or more 

containers sharing
⎈ IP and ports
⎈ Volumes

● Ephemeral IP address
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Service
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● Entrypoint for a set of Pods
● Pods chosen by Label selector
● Permanent IP address
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Application Requirements

Predictable Demands
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● Declared requirements 
○ Scheduling decisions
○ Capacity planning
○ Matching infrastructure 

services

How can we handle resource requirements 
deterministically?

● Runtime dependencies
○ Persistent Volumes
○ Host ports
○ Dependencies on ConfigMaps 

and Secrets



Resource Profiles
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● Resources:
○ CPU, Network (compressible)
○ Memory (incompresible)

● App: Declaration of resource requests and 
limits

● Platform: Resource quotas and limit ranges



Resource Profile
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apiVersion: v1 
kind: Pod 
metadata:
  name: http-server
spec:
  containers:
  - image: nginx

 name: nginx 
    resources: 
      requests:
        cpu: 200m
        memory: 100Mi 
      limits:
        cpu: 300m 
        memory: 200Mi



Quality-of-Service Classes
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● Best Effort
○ No requests or limits 

● Burstable
○ requests < limits

● Guaranteed
○ requests == limits



Declarative Deployment
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Deployment
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Declarative Deployment

● Declarative vs. Imperative deployment
● Deployment Kubernetes Resource:

○ Holds template for Pod
○ Creates ReplicaSet on the fly
○ Allows rollback
○ Update strategies are declarable
○ Inspired by DeploymentConfig from OpenShift

How can applications be deployed and updated?



Rolling Deployment
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Fixed Deployment
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Canary Release
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Blue-Green Release
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Init Container
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Init Container

● Init Containers:
○ Part of a Pod
○ One shot actions before application starts
○ Needs to be idempotent
○ Has own resource requirements

How can we initialize our containerized 
applications?
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apiVersion: v1
kind: Pod
....
spec:
  initContainers:
  - name: download
    image: axeclbr/git
    command: [ "git","clone","https://github.com/myrepo","/data"]
    volumeMounts:
    - mountPath: /var/lib/data
      name: source
  containers:
  - name: run
    image: docker.io/centos/httpd
    volumeMounts:
    - mountPath: /var/www/html
      name: source
  volumes:
  - emptyDir: {}
    name: source



Sidecar Pattern 
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Sidecar

● Runtime collaboration of containers
● Connected via shared resources:

○ Network 
○ Volumes

● Similar what AOP is for programming
● Separation of concerns

How do we enhance the functionality of an 
application without changing it?



Sidecar
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Ambassador Pattern 
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Ambassador

● Also known as Proxy
● Specialization of a Sidecar
● Examples for infrastructure services

○ Circuit breaker
○ Tracing

How to decouple a container’s access to the 
outside world?



Ambassador
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Adapter Pattern 
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Adapter

● Opposite of Ambassador
● Uniform access to an application
● Examples

○ Monitoring
○ Logging

How to decouple access to a container from the 
outside world?



Adapter

Adapter

45



CONFIGURATIONAL 
PATTERNS

Kubernetes

46



47

Configurational Patterns

How can applications be configured for different 
environments?



EnvVar Configuration
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EnvVar Configuration

● Universal applicable
● Recommended by the Twelve Factor App 

manifesto
● Can only be set during startup of an application



EnvVar Configuration
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EnvVar Configuration



ConfigMap 
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Configuration Resource

● Key-Value Map
● Use in Pods as:

○ environment variables
○ volumes with keys as file names and values as file content

kubectl create cm spring-boot-config \   
   --from-literal=JAVA_OPTIONS=-Djava.security.egd=file:/dev/urandom \
   --from-file=application.properties



ConfigMap
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Configuration Resource



Secret
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● Like ConfigMap but content Base64 encoded
● Secrets are …

○ … only distributed to nodes running Pods that need it
○ … only stored in memory in a tmpfs and never written to physical 

storage
○ … stored encrypted in the backend store (etcd)

● Access can be restricted with RBAC rules
● But: For high security requirements application based 

encryption is needed



Configuration Template
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● ConfigMap not suitable for large configuration
● Managing similar configuration
● Ingredients:

○ Init-container with template processor and templates
○ Parameters from a ConfigMap Volume

How to manage large and complex similar 
configuration data?



Configuration Template
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Configuration Template

Configuration Template
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● Good for large, similar configuration sets per 
environment

● Parameterization via ConfigMaps easy
● More complex



Immutable Configuration

Immutable Configuration
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● Configuration is put into a container itself
● Configuration container is linked to application 

container during runtime

● Not directly supported by Kubernetes
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Operator

Operator Pattern
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● We want to encapsulate operational knowledge 
so we can
○ Manage installations
○ Manage configuration
○ Manage updates and fail-overs

How to encapsulate operational knowledge into 
executable software?



Definition
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Operator

Technical:

“” An operator is a Kubernetes controller that understands 
two domains: Kubernetes and something else. By combining 
knowledge of both areas, it can automate tasks that usually 
require a human operator that understands both domains.
Jimmy Zelinskie
http://bit.ly/2Fjlx1h

Operator = Controller + CustomResourceDefinition



OperatorHub.io
Operator
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Wrap Up

Operator Pattern
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● Kubernetes offers a rich feature set to manage 
containerised applications

● Patterns can help in solving recurring Kubernetes, 
legacy application and Microservices challenges

● Patterns will continue to emerge



https://k8spatterns.io

@ro14nd

@k8spatterns

@bibryam

Thank you
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A Pattern Language, Christopher Alexander et. al, 1977, pp. 444
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● Open Source container orchestration system 
started by Google in 2014
⎈ Scheduling 
⎈ Self-healing 
⎈ Horizontal and vertical scaling 
⎈ Service discovery
⎈ Automated Rollout and Rollbacks

● Declarative resource-centric REST API
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Control Plane Components
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● API Server: kube-api-server exposes the Kubernetes API to the 
world.  Stores cluster state in etcd

● etcd metadata store: a consistent and reliable distributed 
key-value store (https://coreos.com/etcd/)

● Scheduler: kube-scheduler schedules pods to worker nodes
● Controller manager: kube-controller manager is a single process 

that contains multiple controller watching for events and changes 
to the cluster

● Cloud controller manager: Embeds cloud-specific control loops.

https://coreos.com/etcd/


Data Plane Components
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● A collection of nodes that run containerized workloads as pods
● kubelet: Responsible for communicating with the API server and 

running and managing pods on the node
● kube-proxy: Responsible for the networking of the node.  Fronts 

services and can forward TCP and UDP packets and also discovers 
addresses of services via DNS or environment variables

● Kubectl: The command-line interface (CLI) to the Kubernetes 
cluster (kubectl <command> --help)



Data Plane Components
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● Container runtime: Kubernetes runs containers through 
an interface called the CRI based on gRPC.
⎈ Any container runtime that implements CRI can be used 

on a node controlled by the kubelet



Architecture
Kubernetes
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Kubernetes

Pod
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Kubernetes
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Monitoring Health
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Health Probe

● Process health checks
○ Checks running process
○ Restarts container if container process died

● Application provided Health Probes
○ Liveness Probe: Check application health
○ Readiness Probe: Check readiness to process 

requests

How to communicate an application’s health state 
to Kubernetes?



Liveness & Readiness

Health Probe

78

● Liveness Probe
○ Restarting containers if liveness probes fail

● Readiness Probe
○ Removing from service endpoint if readiness probe 

fails
● Probe methods

○ HTTP endpoint
○ TCP socket endpoint
○ Unix command’s return value



Health Probe
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apiVersion: v1
kind: Pod
metadata:
  name: pod-with-readiness-check
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    livenessProbe:
      httpGet:
        path: /actuator/health
        port: 8080
      initialDelaySeconds: 30
    readinessProbe:
      exec:
        command: [ "stat", "/var/run/random-generator-ready" ]



Container Observability Options

Health Probe
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Lifecycle Events
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Managed Lifecycle

How applications should react on lifecycle events?



Managed Container Lifecycle

Managed Lifecycle
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Lifecycle Events
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Managed Lifecycle

● SIGTERM
○ Initial event issued when a container is going to shutdown
○ Application should listen to this event to cleanup properly 

and then exit
● SIGKILL

○ Final signal sent after a grace period which can’t be 
catched

○ terminationGracePeriodSeconds: Time to wait after 
SIGTERM (default: 30s)



Lifecycle Hooks

Managed Lifecycle
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● postStart 
○ Called after container is created
○ Runs in parallel to the main container
○ Keeps Pod in status Pending until exited 

successfully
○ exec or httpGet handler types (like Health Probe)

● preStop
○ Called before container is stopped
○ Same purpose & semantics as for SIGTERM



Managed Lifecycle
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apiVersion: v1
kind: Pod
metadata:
  name: pre-stop-hook
spec:
  containers:
  - image: k8spatterns/random-generator:1.0
    name: random-generator
    lifecycle:
      postStart:
        exec:
          command:
          - sh
          - -c
          - sleep 30 && echo "Wake up!" > /tmp/postStart_done
      preStop:
        httpGet:
          port: 8080
          path: /shutdown



Batch Job Pattern
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Job
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Batch Job

● Resource for a predefined finite unit-of-work
● Survives cluster restarts and node failures
● Support for multiple Pod runs
● .spec.completions

○ How many Pods to run to complete Job
● .spec.parallelism

○ How many Pods to run in parallel

How to run short-lived Pods reliably until 
completion?



Parallel Batch Job

Batch Job
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Job Types

Batch Job
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● Single Pod Job
○ completions = 1 and parallelism = 1

● Fixed completion count Jobs
○ completions > 1
○ One Pod per work item

● Work queue Jobs
○ completions = 1 and parallelism > 1
○ All Pods need to finish, with at least one Pod exciting 

successfully
○ Pods needs to coordinate to shutdown in a coordinate fashion



Stateful Service Pattern
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Distributed Stateful Services
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● Non-shared persistent Storage
● Unique and stable network address
● Unique identity
● Defined instance order
● Minimal availability

How to manage stateful workloads?



StatefulSet

Stateful Service

93

● Similar to ReplicaSet
● Additional Elements

○ servicveName - reference to headless Service
○ volumeClaimTemplates - template for creating 

instance unique PVCs
● Assinged PVs are not automically deleted
● Headless service for creating DNS entries 

for each instance’s Pod



Headless Service

Stateful Service
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apiVersion: v1
kind: Service
metadata:
  name: random-generator
spec:
  clusterIP: None
  selector:
    app: random-generator
  ports:
  - name: http
    port: 8080

rg-0.random-generator.default.svc.cluster.local
rg-1.random-generator.default.svc.cluster.local
…



Stateful Service
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apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: rg
spec:
  serviceName: random-generator
  replicas: 2
  selector:
    matchLabels:
      app: random-generator
  template:
    metadata:
      labels:
        app: random-generator
    spec:
      containers:
      - image: k8spatterns/random-generator:1.0
        name: random-generator
        name: http
        volumeMounts:
        - name: logs
          mountPath: /logs
  volumeClaimTemplates:
  - metadata:
      name: logs
    spec:
      resources:
        requests:
          storage: 10Mi



Stateful Service
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Singleton Service
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Singleton Service

How to ensure that only one application instance 
is active?



Out-of-Application Locking
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Out-of-Application Locking
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● ReplicaSet with 1 replica
● Highly available Pod which is monitored and 

restarted in case of failures
● ReplicaSet favors availability over 

consistency
→ more than one Pod can exists temporarily

● Alternative: StatefulSet with 1 replica



In-Application Locking
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In-Application Locking
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● Distributed lock shared by simultaneously 
running applications

● Active-Passive topology
● Distributed lock implementations e.g.

○ Zookeeper
○ Consul
○ Redis
○ etcd



Pod Disruption Budget
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Ensures a certain number of Pods will not 
voluntarily be evicted from a node

apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
  name: random-generator-pdb
spec:
  selector:
    matchLabels:
      app: random-generator
  minAvailable: 2



Service Discovery Pattern
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Service Discovery
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Service Discovery

How to discover and use services?



Client-side Service Discovery (non Kubernetes)

Service Discovery
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Server-side Service Discovery (Kubernetes)

Service Discovery
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Internal Service Discovery

Service Discovery
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● Discovery through DNS lookups
● Pods picked by label selector
● Multiple ports per Service
● Session affinity on IP address
● Successful readiness probes  

required for routing
● Virtual IP address for each 

Service



Service Discovery
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Manual Service Discovery

● Service without selector
● Manually creating Endpoint 

resource with the same name as 
the Service

● Service of type ExternalName 
map are registered as DNS 
CNAMEs



Node Port
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Load Balancer Ingress



Ingress

Service Discovery
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apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: random-generator
spec:
  rules:
  - http:
      paths:
      - path: /
        backend:
          serviceName: random-generator
          servicePort: 8080
      - path: /cluster-status
        backend:
          serviceName: cluster-status
          servicePort: 80



Service Discovery
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Controller
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Controller

How to get from the current state to the declared 
target state?



State Reconciliation
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Controller

● Kubernetes as distributed state manager
● Make the actual state more like the declared 

target state.

🔎 Observe - Discover the actual state
🤔 Analyze - Determine difference to target state
🔨 Act- Perform actions to drive the actual to the desired 

state



Observe - Analyze - Act

Controller
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Common Triggers

Controller
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● Labels
○ Indexed by backend
○ Suitable for selector-like functionality
○ Limitation on characterset for names and values

● Annotations
○ No syntax restrictions
○ Not indexed

● ConfigMaps
○ Good for complex structured state declarations
○ Simple alternative to CustomResourceDefinitions



Controller
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namespace=${WATCH_NAMESPACE:-default} 
base=http://localhost:8001
ns=namespaces/$namespace

curl -N -s $base/api/v1/${ns}/configmaps?watch=true | \
while read -r event
do
  type=$(echo "$event" | jq -r '.type')
  config_map=$(echo "$event" | jq -r '.object.metadata.name')      
  annotations=$(echo "$event" | jq -r '.object.metadata.annotations')

  if [ $type = "MODIFIED" ]; then
    # Restart Pods using this ConfigMap
    # ...
  fi 
done

ConfigMap Watch Controller
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Scaling

Elastic Scale
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● Horizontal: Changing replicas of a Pod
● Vertical: Changing resource constraints of containers in a single Pod
● Cluster: Adding new nodes to a cluster
● Manual: Changing scale parameters manually,. imperatively or 

declaratively
● Automatic: Change scaling parameters based on observed metrics

How to automatically react to dynamically 
changing resource requirements?



Scaling
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● Horizontal: Changing replicas of a Pod
● Vertical: Changing resource constraints of 

containers in a single Pod
● Cluster: Adding new nodes to a cluster
● Manual: Changing scale parameters 

manually,. imperatively or declaratively
● Automatic: Change scaling parameters 

based on observed metrics



Horizontal Pod Autoscaler (HPA)
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kubectl autoscale deployment random-generator --cpu-percent=50 --min=1 --max=5



HorizontalPodAutoscaler
Elastic Scale
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apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
  name: random-generator
spec:
  minReplicas: 1
  maxReplicas: 5
  scaleTargetRef:
    apiVersion: extensions/v1beta1
    kind: Deployment
    name: random-generator
  metrics:
  - resource:
      name: cpu
      target:
        averageUtilization: 50
        type: Utilization
    type: Resource



HPA: Metrics & Challenges
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● Metrics
○ Standard Metrics - CPU & Memory Pod data obtained from Kubernetes 

metrics server
○ Custom Metrics - Metrics delivered via an aggregated API server at the 

custom.metrics.k8s.io API path
○ External Metrics - Metrics obtained from outside the cluster

● Challenges
○ Metric Selection - Correlation between metric value and replica counts
○ Preventing Thrashing - Windowing to avoid scaling on temporary 

spikes
○ Delayed Reaction - Delay between cause and scaling reaction



Vertical Pod Autoscaler (VPA)

Elastic Scale
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VerticalPodAutoscaler
Elastic Scale
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apiVersion: poc.autoscaling.k8s.io/v1alpha1
kind: VerticalPodAutoscaler
metadata:
  name: random-generator-vpa
spec:
  selector:
    matchLabels:
      app: random-generator
  updatePolicy:
    updateMode: "Off"



VPA: Update Mode

Elastic Scale

127

● updateMode: Off
○ Recommendations are stored in the status: section of 

the VPA resource
○ No changes to the selected resources are performed

● updateMode: Initial
○ Recommendations are applied during creation of a Pod
○ Influences scheduling decission 

● updateMode: Auto
○ Automatically restarts Pods with updated resources based 

on recommendation



Cluster Autoscaler

Elastic Scale
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Cluster Autoscaler

Elastic Scale

129

● Scale-Up
○ Adding a new node if a Pod is marked as unschedulable 

because of scarce resources.
○ Cluster API: Kubernetes API for dynamically managing 

node groups.
● Scale-Down

○ … more than half of a nodes capacity is unused
○ … all movable Pods can be placed on other nodes
○ … no other reasons to prevent node deletion
○ … no Pods that can not be moved



Elastic Scale
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Image Builder
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Image Builder

How to build container images within the cluster?



OpenShift Build
Image Builder
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● Build types:
○ Source-to-Image (S2I)
○ Docker 
○ Pipeline
○ Custom

● Source can be from
○ Git
○ Container Image
○ Secret
○ Binary Input when starting build

● ImageStreams connect build with deployment



OpenShift S2I Build

Image Builder
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BuildConfig
Image Builder
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apiVersion: v1
kind: BuildConfig
metadata:
  name: random-generator-build
spec:
  source: 
    git:
      uri: https://github.com/k8spatterns/random-generator
  strategy:
    sourceStrategy:
      from:
        kind: DockerImage
        name: fabric8/s2i-java
  output:
    to:
      kind: ImageStreamTag
      name: random-generator-build:latest
  triggers:
  - type: ImageChange



S2I Chained 
Build

Image Builder
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Knative
Image Builder

137

● Knative serving
○ Scale-to-Zero

● Knative eventing
○ Event infrastructure for triggering services

● Knative build
○ Transforming source to container image

● Build templates allows reusing build strategies



Build
Image Builder
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apiVersion: build.knative.dev/v1alpha1
kind: Build
metadata:
  name: random-generator-build-jib
spec:
  source: 
    git:
      url: https://github.com/k8spatterns/random-generator.git
      revision: master
  steps:
  - name: build-and-push
    image: gcr.io/cloud-builders/mvn
    args:
    - compile
    - com.google.cloud.tools:jib-maven-plugin:build
    - -Djib.to.image=registry/k8spatterns/random-generator
    workingDir: /workspace



Knative Build

Image Builder

139



Operator Pattern

Advanced Patterns

140



CustomResourceDefinition
Operator

141

Custom resource is modelling a custom domain and 
managed through the Kubernetes API

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  name: configwatchers.k8spatterns.io
spec:
  scope: Namespaced
  group: k8spatterns.io
  version: v1
  names:
    kind: ConfigWatcher
    plural: configwatchers
  validation:
    openAPIV3Schema:
    ...
 



Custom Resource

Operator
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kind: ConfigWatcher
apiVersion: k8spatterns.io/v1
metadata:
  name: webapp-config-watcher
spec:
  configMap: webapp-config
  podSelector:
    app: webapp



Operator
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CRD Classification

Operator
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● Installation CRDs
○ Installing and operating applications
○ Backup and Restore
○ Monitoring and self-healing
○ Example: Prometheus for installing Prometheus & 

components
● Application CRDs

○ Application specific domain concepts
○ Example: ServiceMonitor for registering Kubernetes 

service to be scraped by Prometheus



Operator Development

Operator
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● Operator can be implemented in any language
● Frameworks:

○ Operator Framework (Golang, Helm, Ansible)
https://github.com/operator-framework

○ Kubebuilder (Golang)
https://github.com/kubernetes-sigs/kubebuilder

○ Metacontroller (Language agnostic)
https://metacontroller.app/

○ jvm-operators (Java, Groovy, Kotlin, …)
https://github.com/jvm-operators

https://github.com/operator-framework
https://github.com/kubernetes-sigs/kubebuilder
https://metacontroller.app/
https://github.com/jvm-operators
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Preparing Configuration during Startup

Configuration Template
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● Init Container …
○ … contains a template processor
○ … holds the configuration template
○ … picks up template parameter from a ConfigMap
○ … stores final configuration on a shared volume

● Main Container ….
○ … accesses created configuration from shared volume



Configuration Template
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apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: wildfly-cm-template
spec:
  replicas: 1
  template:
    spec:
      initContainers:
      - image: k8spatterns/config-init
        name: init
        volumeMounts:
        - mountPath: "/params"
          name: wildfly-parameters
        - mountPath: "/out"
          name: wildfly-config
      

containers:
- image: jboss/wildfly:10.1.0.Final
  name: server
  volumeMounts:
  - mountPath: "/config"
    name: wildfly-config
volumes:
- name: wildfly-parameters
  configMap:
    name: wildfly-params-cm
- name: wildfly-config
  emptyDir: {}  


