
Reusable Elements for Designing
Cloud-Native Applications

Kubernetes
Patterns

Robert Sedor
Senior Cloud Platform Architect

Agenda

Kubernetes

2

● Patterns
● Kubernetes
● Categories:
⎈ Foundational Patterns
⎈ Structural Patterns
⎈ Configurational Patterns
⎈ Advanced Patterns

Dad Jokes

Kubernetes

3

Q: Why was the developer unhappy at their job?

A: They wanted arrays

Q: Why was the function sad after a successful first call?

A: It didn’t get a callback

PATTERNS

Kubernetes

4

Design Patterns

Kubernetes

5

A Design Pattern describes a
repeatable solution to a software
engineering problem.

Patterns

6

Patterns

7

Patterns

8

Design Patterns, Elements of Reusable Object-Oriented Software, E. Gamma et. al., 1994, p. 12

Patterns

9

Kubernetes Patterns

10 https://k8spatterns.io
https://www.redhat.com/cms/managed-files/cm-oreilly-kubernetes-patterns-ebook-f19824-201910-en.pdf

https://k8spatterns.io
https://www.redhat.com/cms/managed-files/cm-oreilly-kubernetes-patterns-ebook-f19824-201910-en.pdf

Patterns Structure

Kubernetes

11

● Problem
● Patterns:
⎈ Name
⎈ Solution

https://www.martinfowler.com/articles/writingPatterns.html

https://www.martinfowler.com/articles/writingPatterns.html

KUBERNETES

Kubernetes

12

Kubernetes

Kubernetes

13

● Open Source container orchestration system
started by Google in 2014
⎈ Scheduling
⎈ Self-healing
⎈ Horizontal and vertical scaling
⎈ Service discovery
⎈ Automated Rollout and Rollbacks

● Declarative resource-centric REST API

Kubernetes Architecture

Kubernetes

14

Container Runtime

Kubernetes

15

● Container runtime: Kubernetes runs containers through
an interface called the CRI based on gRPC.
⎈ Any container runtime that implements CRI can be used

on a node controlled by the kubelet

FOUNDATIONAL
PATTERNS

Kubernetes

16

Automatable Unit

Kubernetes

17

● Pods: Atomic unit of containers
● Services: Entry point to pods
● Grouping via Labels, Annotations and

Namespaces

How can we create and manage applications with
Kubernetes.

Pod

Kubernetes

18

● Kubernetes Atom
● One or more

containers sharing
⎈ IP and ports
⎈ Volumes

● Ephemeral IP address

Pod Declaration

Kubernetes

19

20

Kubernetes

Labels

Kubernetes

21

Service

Kubernetes

22

● Entrypoint for a set of Pods
● Pods chosen by Label selector
● Permanent IP address

23

Kubernetes

Predictable Demands

Foundational Patterns

24

Application Requirements

Predictable Demands

25

● Declared requirements
○ Scheduling decisions
○ Capacity planning
○ Matching infrastructure

services

How can we handle resource requirements
deterministically?

● Runtime dependencies
○ Persistent Volumes
○ Host ports
○ Dependencies on ConfigMaps

and Secrets

Resource Profiles

Predictable Demands

26

● Resources:
○ CPU, Network (compressible)
○ Memory (incompresible)

● App: Declaration of resource requests and
limits

● Platform: Resource quotas and limit ranges

Resource Profile

Predictable Demands

27

apiVersion: v1
kind: Pod
metadata:
 name: http-server
spec:
 containers:
 - image: nginx

 name: nginx
 resources:
 requests:
 cpu: 200m
 memory: 100Mi
 limits:
 cpu: 300m
 memory: 200Mi

Quality-of-Service Classes

Predictable Demands

28

● Best Effort
○ No requests or limits

● Burstable
○ requests < limits

● Guaranteed
○ requests == limits

Declarative Deployment

Foundational Patterns

29

Deployment

30

Declarative Deployment

● Declarative vs. Imperative deployment
● Deployment Kubernetes Resource:

○ Holds template for Pod
○ Creates ReplicaSet on the fly
○ Allows rollback
○ Update strategies are declarable
○ Inspired by DeploymentConfig from OpenShift

How can applications be deployed and updated?

Rolling Deployment

Declarative Deployment

31

Fixed Deployment

Declarative Deployment

32

Canary Release

Declarative Deployment

33

Blue-Green Release

Declarative Deployment

34

Declarative Deployment

35

STRUCTURAL
PATTERNS

Kubernetes

36

Init Container

37

Init Container

● Init Containers:
○ Part of a Pod
○ One shot actions before application starts
○ Needs to be idempotent
○ Has own resource requirements

How can we initialize our containerized
applications?

Init Container

38

Init Container

39

apiVersion: v1
kind: Pod
....
spec:
 initContainers:
 - name: download
 image: axeclbr/git
 command: ["git","clone","https://github.com/myrepo","/data"]
 volumeMounts:
 - mountPath: /var/lib/data
 name: source
 containers:
 - name: run
 image: docker.io/centos/httpd
 volumeMounts:
 - mountPath: /var/www/html
 name: source
 volumes:
 - emptyDir: {}
 name: source

Sidecar Pattern

40

Sidecar

● Runtime collaboration of containers
● Connected via shared resources:

○ Network
○ Volumes

● Similar what AOP is for programming
● Separation of concerns

How do we enhance the functionality of an
application without changing it?

Sidecar

Sidecar

41

Ambassador Pattern

42

Ambassador

● Also known as Proxy
● Specialization of a Sidecar
● Examples for infrastructure services

○ Circuit breaker
○ Tracing

How to decouple a container’s access to the
outside world?

Ambassador

Ambassador

43

Adapter Pattern

44

Adapter

● Opposite of Ambassador
● Uniform access to an application
● Examples

○ Monitoring
○ Logging

How to decouple access to a container from the
outside world?

Adapter

Adapter

45

CONFIGURATIONAL
PATTERNS

Kubernetes

46

47

Configurational Patterns

How can applications be configured for different
environments?

EnvVar Configuration

48

EnvVar Configuration

● Universal applicable
● Recommended by the Twelve Factor App

manifesto
● Can only be set during startup of an application

EnvVar Configuration

49

EnvVar Configuration

ConfigMap

50

Configuration Resource

● Key-Value Map
● Use in Pods as:

○ environment variables
○ volumes with keys as file names and values as file content

kubectl create cm spring-boot-config \
 --from-literal=JAVA_OPTIONS=-Djava.security.egd=file:/dev/urandom \
 --from-file=application.properties

ConfigMap

51

Configuration Resource

Secret

Configuration Resource

52

● Like ConfigMap but content Base64 encoded
● Secrets are …

○ … only distributed to nodes running Pods that need it
○ … only stored in memory in a tmpfs and never written to physical

storage
○ … stored encrypted in the backend store (etcd)

● Access can be restricted with RBAC rules
● But: For high security requirements application based

encryption is needed

Configuration Template

Configuration Template

53

● ConfigMap not suitable for large configuration
● Managing similar configuration
● Ingredients:

○ Init-container with template processor and templates
○ Parameters from a ConfigMap Volume

How to manage large and complex similar
configuration data?

Configuration Template

54

Configuration Template

Configuration Template

55

● Good for large, similar configuration sets per
environment

● Parameterization via ConfigMaps easy
● More complex

Immutable Configuration

Immutable Configuration

56

● Configuration is put into a container itself
● Configuration container is linked to application

container during runtime

● Not directly supported by Kubernetes

ADVANCED
PATTERNS

Kubernetes

57

Operator

Operator Pattern

58

● We want to encapsulate operational knowledge
so we can
○ Manage installations
○ Manage configuration
○ Manage updates and fail-overs

How to encapsulate operational knowledge into
executable software?

Definition

59

Operator

Technical:

“” An operator is a Kubernetes controller that understands
two domains: Kubernetes and something else. By combining
knowledge of both areas, it can automate tasks that usually
require a human operator that understands both domains.
Jimmy Zelinskie
http://bit.ly/2Fjlx1h

Operator = Controller + CustomResourceDefinition

OperatorHub.io
Operator

60

Wrap Up

Operator Pattern

61

● Kubernetes offers a rich feature set to manage
containerised applications

● Patterns can help in solving recurring Kubernetes,
legacy application and Microservices challenges

● Patterns will continue to emerge

https://k8spatterns.io

@ro14nd

@k8spatterns

@bibryam

Thank you

62

Appendix

Appendix

63

Patterns

64

A Pattern Language, Christopher Alexander et. al, 1977, pp. 444

Kubernetes Architecture
and Foundational Elements

Foundational Patterns

65

KUBERNETES

Kubernetes

66

Kubernetes

Kubernetes

67

● Open Source container orchestration system
started by Google in 2014
⎈ Scheduling
⎈ Self-healing
⎈ Horizontal and vertical scaling
⎈ Service discovery
⎈ Automated Rollout and Rollbacks

● Declarative resource-centric REST API

Kubernetes Foundational
Elements

Foundational Patterns

68

Kubernetes Architecture

Kubernetes

69

Control Plane Components

Kubernetes

70

● API Server: kube-api-server exposes the Kubernetes API to the
world. Stores cluster state in etcd

● etcd metadata store: a consistent and reliable distributed
key-value store (https://coreos.com/etcd/)

● Scheduler: kube-scheduler schedules pods to worker nodes
● Controller manager: kube-controller manager is a single process

that contains multiple controller watching for events and changes
to the cluster

● Cloud controller manager: Embeds cloud-specific control loops.

https://coreos.com/etcd/

Data Plane Components

Kubernetes

71

● A collection of nodes that run containerized workloads as pods
● kubelet: Responsible for communicating with the API server and

running and managing pods on the node
● kube-proxy: Responsible for the networking of the node. Fronts

services and can forward TCP and UDP packets and also discovers
addresses of services via DNS or environment variables

● Kubectl: The command-line interface (CLI) to the Kubernetes
cluster (kubectl <command> --help)

Data Plane Components

Kubernetes

72

● Container runtime: Kubernetes runs containers through
an interface called the CRI based on gRPC.
⎈ Any container runtime that implements CRI can be used

on a node controlled by the kubelet

Architecture
Kubernetes

73

74

Kubernetes

Pod

75

Kubernetes

Labels

Health Probe Pattern

Patterns

76

Monitoring Health

77

Health Probe

● Process health checks
○ Checks running process
○ Restarts container if container process died

● Application provided Health Probes
○ Liveness Probe: Check application health
○ Readiness Probe: Check readiness to process

requests

How to communicate an application’s health state
to Kubernetes?

Liveness & Readiness

Health Probe

78

● Liveness Probe
○ Restarting containers if liveness probes fail

● Readiness Probe
○ Removing from service endpoint if readiness probe

fails
● Probe methods

○ HTTP endpoint
○ TCP socket endpoint
○ Unix command’s return value

Health Probe

79

apiVersion: v1
kind: Pod
metadata:
 name: pod-with-readiness-check
spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 livenessProbe:
 httpGet:
 path: /actuator/health
 port: 8080
 initialDelaySeconds: 30
 readinessProbe:
 exec:
 command: ["stat", "/var/run/random-generator-ready"]

Container Observability Options

Health Probe

80

Managed Lifecycle
Pattern

Patterns

81

Lifecycle Events

82

Managed Lifecycle

How applications should react on lifecycle events?

Managed Container Lifecycle

Managed Lifecycle

83

Lifecycle Events

84

Managed Lifecycle

● SIGTERM
○ Initial event issued when a container is going to shutdown
○ Application should listen to this event to cleanup properly

and then exit
● SIGKILL

○ Final signal sent after a grace period which can’t be
catched

○ terminationGracePeriodSeconds: Time to wait after
SIGTERM (default: 30s)

Lifecycle Hooks

Managed Lifecycle

85

● postStart
○ Called after container is created
○ Runs in parallel to the main container
○ Keeps Pod in status Pending until exited

successfully
○ exec or httpGet handler types (like Health Probe)

● preStop
○ Called before container is stopped
○ Same purpose & semantics as for SIGTERM

Managed Lifecycle

86

apiVersion: v1
kind: Pod
metadata:
 name: pre-stop-hook
spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 lifecycle:
 postStart:
 exec:
 command:
 - sh
 - -c
 - sleep 30 && echo "Wake up!" > /tmp/postStart_done
 preStop:
 httpGet:
 port: 8080
 path: /shutdown

Batch Job Pattern

Patterns

87

Job

88

Batch Job

● Resource for a predefined finite unit-of-work
● Survives cluster restarts and node failures
● Support for multiple Pod runs
● .spec.completions

○ How many Pods to run to complete Job
● .spec.parallelism

○ How many Pods to run in parallel

How to run short-lived Pods reliably until
completion?

Parallel Batch Job

Batch Job

89

Job Types

Batch Job

90

● Single Pod Job
○ completions = 1 and parallelism = 1

● Fixed completion count Jobs
○ completions > 1
○ One Pod per work item

● Work queue Jobs
○ completions = 1 and parallelism > 1
○ All Pods need to finish, with at least one Pod exciting

successfully
○ Pods needs to coordinate to shutdown in a coordinate fashion

Stateful Service Pattern

Patterns

91

Distributed Stateful Services

Stateful Service

92

● Non-shared persistent Storage
● Unique and stable network address
● Unique identity
● Defined instance order
● Minimal availability

How to manage stateful workloads?

StatefulSet

Stateful Service

93

● Similar to ReplicaSet
● Additional Elements

○ servicveName - reference to headless Service
○ volumeClaimTemplates - template for creating

instance unique PVCs
● Assinged PVs are not automically deleted
● Headless service for creating DNS entries

for each instance’s Pod

Headless Service

Stateful Service

94

apiVersion: v1
kind: Service
metadata:
 name: random-generator
spec:
 clusterIP: None
 selector:
 app: random-generator
 ports:
 - name: http
 port: 8080

rg-0.random-generator.default.svc.cluster.local
rg-1.random-generator.default.svc.cluster.local
…

Stateful Service

95

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: rg
spec:
 serviceName: random-generator
 replicas: 2
 selector:
 matchLabels:
 app: random-generator
 template:
 metadata:
 labels:
 app: random-generator
 spec:
 containers:
 - image: k8spatterns/random-generator:1.0
 name: random-generator
 name: http
 volumeMounts:
 - name: logs
 mountPath: /logs
 volumeClaimTemplates:
 - metadata:
 name: logs
 spec:
 resources:
 requests:
 storage: 10Mi

Stateful Service

96

Singleton Service Pattern

Patterns

97

Singleton Service

98

Singleton Service

How to ensure that only one application instance
is active?

Out-of-Application Locking

Singleton Service

99

Out-of-Application Locking

Singleton Service

100

● ReplicaSet with 1 replica
● Highly available Pod which is monitored and

restarted in case of failures
● ReplicaSet favors availability over

consistency
→ more than one Pod can exists temporarily

● Alternative: StatefulSet with 1 replica

In-Application Locking

Singleton Service

101

In-Application Locking

Singleton Service

102

● Distributed lock shared by simultaneously
running applications

● Active-Passive topology
● Distributed lock implementations e.g.

○ Zookeeper
○ Consul
○ Redis
○ etcd

Pod Disruption Budget

Singleton Service

103

Ensures a certain number of Pods will not
voluntarily be evicted from a node

apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
 name: random-generator-pdb
spec:
 selector:
 matchLabels:
 app: random-generator
 minAvailable: 2

Service Discovery Pattern

Patterns

104

Service Discovery

105

Service Discovery

How to discover and use services?

Client-side Service Discovery (non Kubernetes)

Service Discovery

106

Server-side Service Discovery (Kubernetes)

Service Discovery

107

Internal Service Discovery

Service Discovery

108

● Discovery through DNS lookups
● Pods picked by label selector
● Multiple ports per Service
● Session affinity on IP address
● Successful readiness probes

required for routing
● Virtual IP address for each

Service

Service Discovery

109

Manual Service Discovery

● Service without selector
● Manually creating Endpoint

resource with the same name as
the Service

● Service of type ExternalName
map are registered as DNS
CNAMEs

Node Port

Service Discovery

110

Load Balancer Ingress

Ingress

Service Discovery

111

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: random-generator
spec:
 rules:
 - http:
 paths:
 - path: /
 backend:
 serviceName: random-generator
 servicePort: 8080
 - path: /cluster-status
 backend:
 serviceName: cluster-status
 servicePort: 80

Service Discovery

112

Controller Pattern

Patterns

113

Controller

114

Controller

How to get from the current state to the declared
target state?

State Reconciliation

115

Controller

● Kubernetes as distributed state manager
● Make the actual state more like the declared

target state.

🔎 Observe - Discover the actual state
🤔 Analyze - Determine difference to target state
🔨 Act- Perform actions to drive the actual to the desired

state

Observe - Analyze - Act

Controller

116

Common Triggers

Controller

117

● Labels
○ Indexed by backend
○ Suitable for selector-like functionality
○ Limitation on characterset for names and values

● Annotations
○ No syntax restrictions
○ Not indexed

● ConfigMaps
○ Good for complex structured state declarations
○ Simple alternative to CustomResourceDefinitions

Controller

118

namespace=${WATCH_NAMESPACE:-default}
base=http://localhost:8001
ns=namespaces/$namespace

curl -N -s $base/api/v1/${ns}/configmaps?watch=true | \
while read -r event
do
 type=$(echo "$event" | jq -r '.type')
 config_map=$(echo "$event" | jq -r '.object.metadata.name')
 annotations=$(echo "$event" | jq -r '.object.metadata.annotations')

 if [$type = "MODIFIED"]; then
 # Restart Pods using this ConfigMap
 # ...
 fi
done

ConfigMap Watch Controller

Elastic Scale Pattern

Patterns

119

Scaling

Elastic Scale

120

● Horizontal: Changing replicas of a Pod
● Vertical: Changing resource constraints of containers in a single Pod
● Cluster: Adding new nodes to a cluster
● Manual: Changing scale parameters manually,. imperatively or

declaratively
● Automatic: Change scaling parameters based on observed metrics

How to automatically react to dynamically
changing resource requirements?

Scaling

Elastic Scale

121

● Horizontal: Changing replicas of a Pod
● Vertical: Changing resource constraints of

containers in a single Pod
● Cluster: Adding new nodes to a cluster
● Manual: Changing scale parameters

manually,. imperatively or declaratively
● Automatic: Change scaling parameters

based on observed metrics

Horizontal Pod Autoscaler (HPA)

Elastic Scale

122

kubectl autoscale deployment random-generator --cpu-percent=50 --min=1 --max=5

HorizontalPodAutoscaler
Elastic Scale

123

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
 name: random-generator
spec:
 minReplicas: 1
 maxReplicas: 5
 scaleTargetRef:
 apiVersion: extensions/v1beta1
 kind: Deployment
 name: random-generator
 metrics:
 - resource:
 name: cpu
 target:
 averageUtilization: 50
 type: Utilization
 type: Resource

HPA: Metrics & Challenges

Elastic Scale

124

● Metrics
○ Standard Metrics - CPU & Memory Pod data obtained from Kubernetes

metrics server
○ Custom Metrics - Metrics delivered via an aggregated API server at the

custom.metrics.k8s.io API path
○ External Metrics - Metrics obtained from outside the cluster

● Challenges
○ Metric Selection - Correlation between metric value and replica counts
○ Preventing Thrashing - Windowing to avoid scaling on temporary

spikes
○ Delayed Reaction - Delay between cause and scaling reaction

Vertical Pod Autoscaler (VPA)

Elastic Scale

125

VerticalPodAutoscaler
Elastic Scale

126

apiVersion: poc.autoscaling.k8s.io/v1alpha1
kind: VerticalPodAutoscaler
metadata:
 name: random-generator-vpa
spec:
 selector:
 matchLabels:
 app: random-generator
 updatePolicy:
 updateMode: "Off"

VPA: Update Mode

Elastic Scale

127

● updateMode: Off
○ Recommendations are stored in the status: section of

the VPA resource
○ No changes to the selected resources are performed

● updateMode: Initial
○ Recommendations are applied during creation of a Pod
○ Influences scheduling decission

● updateMode: Auto
○ Automatically restarts Pods with updated resources based

on recommendation

Cluster Autoscaler

Elastic Scale

128

Cluster Autoscaler

Elastic Scale

129

● Scale-Up
○ Adding a new node if a Pod is marked as unschedulable

because of scarce resources.
○ Cluster API: Kubernetes API for dynamically managing

node groups.
● Scale-Down

○ … more than half of a nodes capacity is unused
○ … all movable Pods can be placed on other nodes
○ … no other reasons to prevent node deletion
○ … no Pods that can not be moved

Elastic Scale

130

Image Builder Pattern
(OpenShift)

Patterns

131

Image Builder

132

Image Builder

How to build container images within the cluster?

OpenShift Build
Image Builder

133

● Build types:
○ Source-to-Image (S2I)
○ Docker
○ Pipeline
○ Custom

● Source can be from
○ Git
○ Container Image
○ Secret
○ Binary Input when starting build

● ImageStreams connect build with deployment

OpenShift S2I Build

Image Builder

134

BuildConfig
Image Builder

135

apiVersion: v1
kind: BuildConfig
metadata:
 name: random-generator-build
spec:
 source:
 git:
 uri: https://github.com/k8spatterns/random-generator
 strategy:
 sourceStrategy:
 from:
 kind: DockerImage
 name: fabric8/s2i-java
 output:
 to:
 kind: ImageStreamTag
 name: random-generator-build:latest
 triggers:
 - type: ImageChange

S2I Chained
Build

Image Builder

136

Knative
Image Builder

137

● Knative serving
○ Scale-to-Zero

● Knative eventing
○ Event infrastructure for triggering services

● Knative build
○ Transforming source to container image

● Build templates allows reusing build strategies

Build
Image Builder

138

apiVersion: build.knative.dev/v1alpha1
kind: Build
metadata:
 name: random-generator-build-jib
spec:
 source:
 git:
 url: https://github.com/k8spatterns/random-generator.git
 revision: master
 steps:
 - name: build-and-push
 image: gcr.io/cloud-builders/mvn
 args:
 - compile
 - com.google.cloud.tools:jib-maven-plugin:build
 - -Djib.to.image=registry/k8spatterns/random-generator
 workingDir: /workspace

Knative Build

Image Builder

139

Operator Pattern

Advanced Patterns

140

CustomResourceDefinition
Operator

141

Custom resource is modelling a custom domain and
managed through the Kubernetes API

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 name: configwatchers.k8spatterns.io
spec:
 scope: Namespaced
 group: k8spatterns.io
 version: v1
 names:
 kind: ConfigWatcher
 plural: configwatchers
 validation:
 openAPIV3Schema:
 ...

Custom Resource

Operator

142

kind: ConfigWatcher
apiVersion: k8spatterns.io/v1
metadata:
 name: webapp-config-watcher
spec:
 configMap: webapp-config
 podSelector:
 app: webapp

Operator

143

CRD Classification

Operator

144

● Installation CRDs
○ Installing and operating applications
○ Backup and Restore
○ Monitoring and self-healing
○ Example: Prometheus for installing Prometheus &

components
● Application CRDs

○ Application specific domain concepts
○ Example: ServiceMonitor for registering Kubernetes

service to be scraped by Prometheus

Operator Development

Operator

145

● Operator can be implemented in any language
● Frameworks:

○ Operator Framework (Golang, Helm, Ansible)
https://github.com/operator-framework

○ Kubebuilder (Golang)
https://github.com/kubernetes-sigs/kubebuilder

○ Metacontroller (Language agnostic)
https://metacontroller.app/

○ jvm-operators (Java, Groovy, Kotlin, …)
https://github.com/jvm-operators

https://github.com/operator-framework
https://github.com/kubernetes-sigs/kubebuilder
https://metacontroller.app/
https://github.com/jvm-operators

Configuration Template

Configurational Patterns

146

Preparing Configuration during Startup

Configuration Template

147

● Init Container …
○ … contains a template processor
○ … holds the configuration template
○ … picks up template parameter from a ConfigMap
○ … stores final configuration on a shared volume

● Main Container ….
○ … accesses created configuration from shared volume

Configuration Template

148

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: wildfly-cm-template
spec:
 replicas: 1
 template:
 spec:
 initContainers:
 - image: k8spatterns/config-init
 name: init
 volumeMounts:
 - mountPath: "/params"
 name: wildfly-parameters
 - mountPath: "/out"
 name: wildfly-config

containers:
- image: jboss/wildfly:10.1.0.Final
 name: server
 volumeMounts:
 - mountPath: "/config"
 name: wildfly-config
volumes:
- name: wildfly-parameters
 configMap:
 name: wildfly-params-cm
- name: wildfly-config
 emptyDir: {}

