
OPENSHIFT CONTAINER PLATFORM

DEVSECOPS DEEP-DIVE

GENERAL DISTRIBUTION

OPENSHIFT BUILD STRATEGIES

● Source: use source codes from git
repository or Dockerfile as the build
input

● Binary: Streaming content in binary
format from a local file system to the
builder

● Image: Additional files can be provides
to the build process via images. Files
will copy from source image to
destination image.

2

GENERAL DISTRIBUTION

OPENSHIFT BUILD STEPS INCLUDE

● Trigger a build in OpenShift
● Verify a build succeeded
● Trigger a deployment
● Scale a deployment up/down
● Verify a deployment

succeeded
● Verify a service is accessible

● Tag an image
● Create Resource via

YAML/JSON
● Delete any resource
● Cancel a build
● Cancel a deployment

3

GENERAL DISTRIBUTION4

BUILD AND DEPLOY CONTAINER IMAGES

DEPLOY YOUR
SOURCE CODE

DEPLOY YOUR
CONTAINER IMAGE

DEPLOY YOUR
APP BINARY

GENERAL DISTRIBUTION5

SOURCE CODE DEPLOYMENT

Git
RepositoryBUILD APP

(OpenShift) Developer

code

Source-to-Image
(S2I)

Builder
Image

Image
Registry

BUILD IMAGE
(OpenShift)

DEPLOY
(OpenShift)

deployApplication
Container

OpenShift DoesUser/Tool Does

GENERAL DISTRIBUTION6

APP BINARY DEPLOYMENT
Application

Binary
(e.g. WAR)BUILD APP

(Build Infra) Existing Build
Process

build

Source-to-Image
(S2I)

Builder
Image

Image
Registry

BUILD IMAGE
(OpenShift)

DEPLOY
(OpenShift)

deployApplication
Container

OpenShift DoesUser/Tool Does

GENERAL DISTRIBUTION7

CONTAINER IMAGE DEPLOYMENT

DEPLOY
(Openshift)

build

Application
Container

deploy

Application
Image

Image
Registry

BUILD IMAGE
(Build Infra) Existing Image

Build Process

PUSH
(Build Infra)

OpenShift DoesUser/Tool Does

GENERAL DISTRIBUTION

WHAT ARE IMAGE STREAMS?

● Contains all of the metadata
information about any given image that
is specified in the Image Stream
specification

● Does not contain the actual image data

● Ultimately points either to an external
registry, e.g.
registry.access.redhat.com, quay.io,
OpenShift’s internal, etc.

8

GENERAL DISTRIBUTION

HOW ARE IMAGE STREAMS CREATED?

● python:3.5 - python is the new Image Stream that will be created as
a result of this invocation. Additionally we are explicitly pointing that
the imported image will be kept under the 3.5 Image Stream Tag of
that Image Stream. If no tag part is specified the command will use
latest.

● --from=rhscl/python-35-rhel7 - states what external image the
Image Stream Tag will point to.

● --confirm - informs the system that the python Image Stream
should be created

Create a Image Stream named 'python' with a single tag pointing to 3.5
oc import-image python:3.5 --from=rhscl/python-35-rhel7 --confirm

9

GENERAL DISTRIBUTION

OPENSHIFT LOVES CI/CD

JENKINS-AS-A SERVICE
ON OPENSHIFT

HYBRID JENKINS INFRA
WITH OPENSHIFT

EXISTING CI/CD
DEPLOY TO OPENSHIFT

10

GENERAL DISTRIBUTION

JENKINS-AS-A-SERVICE ON OPENSHIFT

● Certified Jenkins images with pre-
configured plugins
○ Provided out-of-the-box
○ Follows Jenkins 1.x and 2.x LTS

versions

● Jenkins S2I Builder for customizing the
image
○ Install plugins, configure Jenkins,

configure build jobs

Plugins
Jobs

Configuration

Jenkins
(S2I)

Custom
Jenkins
Image

Jenkins
Image

11

GENERAL DISTRIBUTION

JENKINS PLUGIN

● The most fundamental part of a
Pipeline

● Tell Jenkins what to do, and serve
as the basic building block for
both Declarative and Scripted
Pipeline syntax

12

GENERAL DISTRIBUTION

OPENSHIFT JENKINS PLUGIN

13

GENERAL DISTRIBUTION

kind: BuildConfig
apiVersion: v1
metadata:

name: sample-pipeline
labels:

Name: sample-pipeline
spec:

triggers:
- type: GitHub

github:
secret: secret101

- type: Generic
generic:

secret: secret101
strategy:

type: JenkinsPipeline
jenkinsPipelineStrategy:

jenkinsfile: |-
node('maven') {
stage 'build'

openshiftBuild(buildConfig: 'ruby-sample-build', showBuildLogs:'true')
stage 'deploy'
openshiftDeploy(deploymentConfig: 'frontend')

}

14

GENERAL DISTRIBUTION

OPENSHIFT
PIPELINES IN

WEB CONSOLE

15

GENERAL DISTRIBUTION

OPENSHIFT DEPLOYMENT STRATEGIES

ROLLING
DEPLOYMENTS

A rolling deployment slowly replaces
instances of the previous version of
an application with instances of the

new version of the application.

BLUE/GREEN
DEPLOYMENTS

A blue/green deployment is a
software deployment strategy that
relies on two identical production

configurations that alternate
between active and inactive.

A/B DEPLOYMENTS

A/B testing (sometimes called split
testing) is comparing two versions of

a web page to see which one
performs better.

Painless deployments with zero/reduced downtime through automation

16

THANK YOU

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

