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What is machine learning?

@willb S, Red Hat
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data as the foundation




Why “on Kubernetes?”

@willb &, Red Hat
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efficient isolation,
secure by default

OpenShiftis Kubernetes
with a great developer experience.
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efficient isolation,
secure by default

rise Kubernetes

with a great.developerexperience.
workflows to accelerate discovery




Some common concerns
for Al/ML systems

@willb &, Red Hat
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(joint) distribution of input data:

distribution of predictions?

distribution of number of
multiplications while scoring?
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Intelligent applications are
machine learning systems

@willb &, Red Hat
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Managing compute and dataina
shared discovery environment

@willb
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There's no one-size-fits-all
architecture for Al/ML

@willb
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From developer experience to
data scientist experience(s)

@willb &, RedHat
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In this notebook we will process the synthetic Austen/food reviews data and convert it into
feature vectors. In later notebooks these feature vectors will be the inputs to models which we
will train and eventually use to identify spam. 3

This notebook uses term frequency-inverse document frequency, or tf-idf, to generate feature
vectors. Tf-idf is commonly used to summarise text data, and it aims to capture how important
different words are within a set of documents. Tf-idf combines a normalized word count (or term
frequency) with the inverse document frequency (or a measure of how common a word is across
all documents) in order to identify words, or terms, which are 'interesting' or important within the
document.

We begin by loading in the data:

In [1]: import pandas as pd

df = pd.read parquet("data/training.parquet")

To illustrate the computation of tf-idf vectors we will first implement the method on a sample of

" 2
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Running our models as services gives us an interesting opportunity to detect data drift by publishing the distribution of our predictions as metrics. If the
distribution of predictions shifts over time, we can use that as an indication that the distribution of the data we're evaluating has shifted as well, and that we
should re-train our modal.

In this example, our pipeline service publishes metrics related to the predict}ons made by the model (keys beginning with pipeline predictions )as
well as metrics related to the computational performance of our pipeline service (keys beginning with pipeline processing seconds ).

In [ ]: get metrics()
Since our service publishes Prometheus metrics, we can define alerting rules or visualize how our metric values change over time.

In [ ]: def experiment(data, size, **kwargs):
for k, v in kwargs.items():
sample = data[data.label == k].sample(int(size * Vv))
score_text(sample["text"].values.tolist())

In [ ]: experiment(data, 20000, legitimate=.05, spam=.95)
experiment (data, 20000, legitimate=.05, spam=.9Y95)
experiment (data, 20000, legitimate=.05, spam=.95)

In [ ]J: experiment(data, 20000, legitimate=.25, spam=.75)

In [ ]: experiment(data, 20000, legitimate=1l)

Exercises

1. What would a REST API for serving multiple versions of multiple pipelines look like? (Hint: consider the verbs and nouns involved.)
2. While we don't have a monitoring stack enabled for this workshop, you can ceritainly insiall and configure one in your own OpenShift cluster. What sort of
alerting rules might you install to identify data drift in this application?
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alerting rules might you install to identify data drift in this application?




Conclusions

@willb &, Red Hat
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