
Automation for all
Ansible technical introduction and overview

Matt Hermanson
Cloud Solutions Architect

USE CASE:

LINUX AUTOMATION

LINUX AUTOMATION

ansible.com/get-started

AUTOMATE EVERYTHING LINUX
Red Hat Enterprise Linux, BSD,

Debian, Ubuntu and many more!

ONLY REQUIREMENTS:
Python 2 (2.6 or later)

or Python 3 (3.5 or later)

150+
Linux Modules

https://www.ansible.com/resources/get-started

- name: upgrade rhel packages
 hosts: rhel

 tasks:
 - name: upgrade all packages
 yum:

 name: '*'
 state: latest

AUTOMATION FOR EVERYONE: SYSTEM ADMINISTRATORS

- name: reboot rhel hosts
 hosts: rhel

 tasks:
 - name: reboot the machine
 reboot:

AUTOMATION FOR EVERYONE: SYSTEM ADMINISTRATORS

- name: check services on rhel hosts
 hosts: rhel
 become: yes

 tasks:
 - name: ensure nginx is started
 service:
 name: nginx
 state: started

AUTOMATION FOR EVERYONE: SYSTEM ADMINISTRATORS

USE CASE:

NETWORK AUTOMATION

ANSIBLE NETWORK AUTOMATION

ansible.com/for/networks
galaxy.ansible.com/ansible-network

700+
Network
Modules

50
Network

Platforms

12*
Galaxy

Network Roles

*Roles developed and maintained by Ansible Network Engineering

https://www.ansible.com/products/network-automation
https://galaxy.ansible.com/ansible-network

PLAN AND PROTOTYPE VIRTUALLY
Use tasks as reusable building blocks

USE YOUR CURRENT DEVELOPMENT PRACTICES
Agile, DevOps, Waterfall

GO BEYOND THE “PING” TEST
Integrate with formal testing platforms

BE CONFIDENT DURING DEPLOYMENT
Validate changes were successful

ENSURE AN ON-GOING STEADY-STATE

WHY AUTOMATE YOUR NETWORK?

- hosts: cisco
 gather_facts: false
 connection: network_cli

 tasks:
- name: show command for cisco

 cli_command:
 command: show ip int br
 register: result

- name: display result to terminal window
 debug:
 var: result.stdout_lines

AUTOMATION FOR EVERYONE: NETWORK ENGINEERS

AUTOMATION FOR EVERYONE: PLAYBOOK RESULTS

USE CASE:

WINDOWS AUTOMATION

WINDOWS AUTOMATION

ansible.com/windows

1,300+
Powershell DSC

resources

90+
Windows
Modules

https://www.ansible.com/integrations/infrastructure/windows

- name: windows playbook

 hosts: new_servers

 tasks:

 - name: ensure local admin account exists

 win_user:

 name: localadmin

 password: '{{ local_admin_password }}'

 groups: Administrators

AUTOMATION FOR EVERYONE: WINDOWS ADMINS

- name: windows playbook

 hosts: windows_machines

 tasks:

 - name: ensure common tools are installed

 win_chocolatey:

 name: '{{ item }}'

 loop: ['sysinternals', 'googlechrome']

AUTOMATION FOR EVERYONE: WINDOWS ADMINS

- name: update and reboot

 hosts: windows_servers

 tasks:

 - name: ensure common OS updates are current

 win_updates:

 register: update_result

 - name: reboot and wait for host if updates change require it

 win_reboot:

 when: update_result.reboot_required

AUTOMATION FOR EVERYONE: WINDOWS ADMINS

USE CASE:

Cloud automation

CLOUD AUTOMATION

ansible.com/cloud

30+
Cloud Platforms

800+
Cloud

 Modules

https://www.ansible.com/integrations/cloud

- name: aws playbook

 hosts: localhost

 connection: local

 tasks:

- name: create AWS VPC ansible-vpc

 ec2_vpc_net:

 name: "ansible-vpc"

 cidr_block: "192.168.0.0/24"

 tags:

 demo: the demo vpc

 register: create_vpc

PLAYBOOK EXAMPLE: AWS

