
Lance Ball
Principal Software Engineer

Front Matter: Next Era Front End
Deployments on OpenShift 4

October 2019

● Principal Software Engineer

● Tech Lead - OpenShift Cloud Functions

● Twitter: @lanceball

● Budding ukulele performer

Lance Ball

● Do you deploy apps on Openshift today?

● Do you write Node.js apps?

● Do you write Single Page Applications?

● Anyone here “full stack”?

● DevOps People?

A Quick Poll

Number one deployment runtime on Openshift
Online is Node.js

● But they’re not all actually Node.js

Applications

● Many deployments are Single Page

Applications

● How are these applications being deployed?

● What tools can I use in my workflow?

Did You Know?

Let’s Build a Web App!

$ npx create-react-app mywebapp

$ cd mywebapp

$ npm start

Edit App.js and watch it reload

Create a React Application

OK - Let’s Deploy It!

But How? OpenShift NGINX

Template via the Catalog

Use the Developer Catalog

OpenShift Template

Use the Developer Catalog
https://github.com/sclorg/nginx-ex/blob/master/openshift/templates/nginx.json

OpenShift Template

https://github.com/sclorg/nginx-ex/blob/master/openshift/templates/nginx.json

But Wait! This doesn’t seem right

for a developer’s

workflow

OpenShift builds pull from Git repo
Not ideal for iterative development

Must maintain compiled artifacts in Git repo
The “build” for a web server image expects static content

Served by a real HTTP server
We can use Apache or NGINX and don’t depend on a React Node.js server

Two Thorns and a Rose

Plant Based Performance Metrics

Source to Image
a.k.a. S2I

Source to Image Workflow

Source to Image

Nodeshift

An npm module for deploying Node apps on OpenShift
Creates, builds, routes and deploys your app in one command

Great for local development environments
Deploys directly from the file system

Layered application images via s2i
Overlays application on a base image, creating a new application image

So What’s Nodeshift?

$ npx express-generator nodejs-example

$ npx nodeshift --expose --deploy.port=3000

Node.js REST Server via Express

But that’s a Node.js app,
not a React SPA

Web Application S2I
Image Builder

$ npx nodeshift
--dockerImage=nodeshift/centos7-s2i-web-app
--imageTag=10.x
--expose
--deploy.port=3000
--deploy.env NPM_RUN=”npm start”

Deploy and Run With Development Server

Deploy the Image

Synchronize
Development Changes in
Real Time

$ oc rsync --no-perms=true \
 --watch src/ <POD_NAME>:src/

Synchronize Changes in Development

oc rsync

Single command deployment & live updates
Easy to integrate into a development workflow

Deploys from the local filesystem
No need to push small changes in development to Github

Serves content using the React server
Not designed for production use

Two Roses and a Thorn

Looking a little better now

Production Deployments

OpenShift
Pipelines

Also known as Tekton

Pipelines
Specifying a workflow

apiVersion: tekton.dev/v1alpha1
kind: Pipeline
metadata:
 name: webapp-deployment-pipeline
spec:
 resources:
 - name: build-image
 type: image
 - name: runtime-image
 type: image

Pipeline

spec:
 tasks:
 - name: build-runtime
 taskRef:
 name: webapp-build-runtime
 resources:
 inputs:
 - name: image
 resource: build-image
 outputs:
 - name: image
 resource: runtime-image

Pipeline (cont)

PipelineResource
Workflow inputs and outputs

apiVersion: tekton.dev/v1alpha1
kind: PipelineResource
metadata:
 name: webapp-build-image
spec:
 type: image
 params:
 - name: url
 value:
image-registry.openshift-image-registry.svc:5000/msa-day-ny/
mywebapp

PipelineResource

apiVersion: tekton.dev/v1alpha1
kind: PipelineResource
metadata:
 name: webapp-prod-image
spec:
 type: image
 params:
 - name: url
 value:
image-registry.openshift-image-registry.svc:5000/msa-day-ny
/webapp-runtime

PipelineResource

Task
Specifying a single job within a
Pipeline

apiVersion: tekton.dev/v1alpha1
kind: Task
metadata:
 name: webapp-build-runtime
spec:
 inputs:
 resources:
 - name: image
 type: image
 params:
 - name: SOURCE_PATH
 description: The location of the webapp source
 default: /opt/app-root/output

Task

 outputs:
 resources:
 - name: image
 type: image
 steps:
 - name: copy-source
 image: ${inputs.resources.image.url}
 workingdir: ${inputs.params.SOURCE_PATH}
 command: ['cp', '-Rvp', '${inputs.params.SOURCE_PATH}',
'/gen-source/build']
 volumeMounts:
 - name: gen-source
 mountPath: /gen-source

Task (cont)

TaskRun
Tasks can be run independently of a
Pipeline

apiVersion: tekton.dev/v1alpha1
kind: TaskRun
metadata:
 name: webapp-prod-build-taskrun
spec:
 # Use service account with git and image repo credentials
 serviceAccount: pipeline
 taskRef:
 name: s2i

TaskRun

apiVersion: tekton.dev/v1alpha1
kind: TaskRun
metadata:
 name: webapp-prod-build-taskrun

spec:
 inputs:
 params:
 - name: BUILDER_IMAGE
 value: docker.io/nodeshift/centos7-s2i-web-app
 - name: PATH_CONTEXT
 value: src

TaskRun (cont)

spec:
 inputs:
 resources:
 - name: source
 resourceSpec:
 type: git
 params:
 - name: url
 value:
https://github.com/lance/pipeline-webapp-example

TaskRun (cont)

spec:
 outputs:
 resources:
 - name: image
 resourceSpec:
 type: image
 params:
 - name: url
 value:
image-registry.openshift-image-registry.svc:5000/nyc-webapp
/webapp-prod

TaskRun (cont)

PipelineRun
Runs all of the Tasks defined in your
pipeline, with parameterized
resources

apiVersion: tekton.dev/v1alpha1
kind: PipelineRun
metadata:
 name: webapp-prod-pipelinerun

spec:
 pipelineRef:
 name: webapp-deployment-pipeline
 trigger:
 type: manual
 serviceAccount: pipeline

PipelineRun

 resources:
 - name: build-image
 resourceRef:
 name: webapp-build-image
 - name: runtime-image
 resourceRef:
 name: webapp-prod-image

PipelineRun (cont)

Single command deployment with local code
Easy to integrate into a development workflow

Deploy and update from the local filesystem
No need to push small changes in development to Github

Production runtime served by a real HTTP server
We can use Apache or NGINX and don’t depend on a React Node.js server

Three Roses!

One Last Thing

Knative Service
Exposing the runtime image

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
 name: production-webapp
 namespace: msa-day-ny
spec:
 template:
 metadata:
 labels:
 app: webapp
 tier: frontend

Service

spec:
 spec:
 containers:
 - image:
image-registry.openshift-image-registry.svc:5000/msa-day-ny/
webapp-runtime
 ports:
 - containerPort: 8080

Service (cont)

CONFIDENTIAL Designator

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

https://docs.openshift.com/container-platform/4.1/welcome/

https://tekton.dev

https://knative.dev

https://github.com/lance/pipeline-webapp-example

Thank You

https://docs.openshift.com/container-platform/4.1/welcome/index.html
https://tekton.dev
https://knative.dev
https://github.com/lance/pipeline-webapp-example

